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• The raw CMIP5 ensemble overestimates
precipitation while underestimating
temperature for the Yangtze River basin.

• Precipitation, runoff and soil moisture
were all projected to increase in the
coming decades.

• Drought magnitude was anticipated to
shift from moderate and severe in the
past to extreme and exceptional in the
future.

• Agriculture drought was projected to be
more severe than meteorological and
hydrological droughts.

• The headwater areas were anticipated
to increase in Agriculture drought
severity.
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Drought is a multifaceted natural hazard that occurs in virtually any component of the hydrological cycle.
Droughtmonitoring and prediction frommultiple viewpoints are essential for reliable risk planning andmanage-
ment. This study presents a joint prognosis of meteorological (M-drought), hydrological (H-drought) and agri-
cultural (A-drought) droughts for the period 2021–2100 over the Yangtze River basin (YRB). The prognosis
uses an ensemble of 10models from the CoupledModel Intercomparison Project Phase 5 (CMIP5) for two future
emission scenarios (RCP4.5 and RCP8.5). Precipitation, runoff, and soil moisture are used to quantify M-drought,
H-drought, and A-drought, respectively. The results indicate that the raw CMIP5 multimodel ensemble for the
YRB generally overestimates precipitation while underestimating temperature. The precipitation, runoff, and
soil moisture are all projected to increase in the coming decades at the spatial scale of the entire YRB. Moreover,
the magnitudes of drought shift frommoderate and severe in the past (1954–2013) to extreme and exceptional
in the future. The durations of drought are anticipated to prolong in the future, especially for the A-droughts. A-
droughts are projected to be more severe than M- and H-droughts. Furthermore, the headwater areas and the
areas surrounding the intersection of Sichuan, Guizhou and Chongqing are anticipated to increase in A-
drought severity. These findings provide insight to inform drought planning and management in the YRB, and
improve our understanding of the ability of precipitation, runoff, and soil moisture to describe droughts under
global warming scenarios.
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1. Introduction

Droughts are a recurring natural hazard that can occur in virtually all
parts of theworld (Rajsekhar and Gorelick, 2017; Schwalm et al., 2017).
Droughts are capable of resulting in substantial ecological (Schwalm
et al., 2017; Vicca et al., 2016) and socioeconomic (Touma et al., 2015)
impacts. Thus, there is great scientific and societal interest in accurately
understanding future drought trends, particularly since global warming
could make drought conditions worse in many regions around the
world (Cook et al., 2015; Dai, 2011). Ultimately, understanding future
drought conditions is necessary to regional, national, and global food,
energy, and water security. Drought conditions can severely affect re-
gional crop production (Lesk et al., 2016; Sehgal et al., 2017), which
can lead to food shortages and, in some extreme cases, famine, further
triggering or exacerbating human conflict and involuntary migration
in vulnerable populations. Droughts can threaten water supplies (artifi-
cial reservoirs and natural sources such as groundwater) (Nazareno and
Laurance, 2015), affecting cities worldwide and undermining our ability
to rely on hydropower for electricity production. The World Economic
Forum (2017) consistently ranks environmental risks associated with
extreme weather events, water crises, and climate change at the top
of their list of global risks facing humanity now and into the future.
Australia'sMillenniumDrought (VanDijk et al., 2013) and themultiyear
California drought (Griffin and Anchukaitis, 2014) are two vivid exam-
ples of the impacts of droughts.

When examining historical observations since 1950, drought trends
across the globe are diverse, consisting of a mixture of drying and wet-
ting regions (Sheffield et al., 2012). For instance, it seems likely that
drought severity and frequency have increased in the Mediterranean
andWest Africa, and decreased in central North America and northwest
Australia (Kirtman et al., 2013). In the case of China, drought trends vary
substantially within the country (Dai, 2011; Sheffield et al., 2012; Zou
et al., 2005). Based on global drought assessments, the general ten-
dency since 1950 shows a significant drying trend in northern
China, while a slight drying trend in the southern region and a slight
wetting trend in most of the eastern region (Dai, 2011; Sheffield
et al., 2012). In contrast, regional drought analyses reveal that severe
and frequent droughts can occur throughout most of China (Lu et al.,
2011; Wang et al., 2011; Xu et al., 2015; Yang et al., 2012). Indeed,
drought is a critical concern in China because of its large country
area and population, extensive agricultural sector, dependence on
hydroelectric power use (main energy source after coal and oil),
and fast growing urbanization and economy. Droughts are a major
cause of economic loss in China, ~35% of all losses from natural disas-
ters (Song et al., 2003).

The Yangtze River basin (YRB) in China is of primary importance be-
cause of its water resources endowment and economic productivity.
The YRB occupies nearly 20% of China's land area (Guan et al., 2015)
but accounts for over 36%of itswater resources (Liu et al., 2016), accom-
modates nearly 33% of its population, and contributes about 40% of its
total GDP (Gao et al., 2012). Several studies have shown, using historical
observations, that changing drought frequency and severity in the YRB
are an important and significant concern. For instance, studies indicate
that drought frequency increased in the middle area of the YRB
(Gemmer et al., 2008; Zhai et al., 2010) during the period 1960–2005.
During this same period, trends have also been found in other parts of
the YRB. Zhai et al. (2010) found a significant decreasing trend in
drought frequency in the upper and lower YRB, while Xu et al. (2015)
and Zhou et al. (2017) have shown increasing trends in the southern
part of the YRB.

With knowledge of significant drought trends in the YRB's near past,
the question arises as to how will these trends be affected by projected
changes in climate. Studies based on outputs from the Coupled Model
Intercomparison Project Phase 3 (CMIP3) indicate that projected
droughts will increase in frequency and severity in China (Leng et al.,
2015). Furthermore, using CMIP5 outputs, several studies have
highlighted the potential for droughts to worsen in the YRB. Lu et al.
(2016) projected that droughts in the upstream YRB during
2021–2050 would be more frequent and severe compared to
1971–2000. Wang and Chen (2014) predicted, using the Palmer
Drought Severity Index (PDSI), a dramatic increase in severe and ex-
treme droughts in the west part of the YRB. Several other studies have
used CMIP5 outputs to explore future climate change in the YRB
(Deng et al., 2013; Pan et al., 2016;Wu et al., 2016). These studies, how-
ever, have not been performed at the subbasin level, which are spatial
units relevant to water-related decision- and policy-making, and have
mostly relied on a single drought variable to assess drought conditions.
We perform here for the first time a comprehensive multivariable anal-
ysis of projected droughts in the YRB at the subbasin level.

Droughts can be defined in different ways. They are commonly de-
fined according to the following four different types: i) meteorological
drought (M-drought), which is based on the lack of precipitation over
a region for a period of time (Mishra and Singh, 2010); ii) hydrological
drought (H-drought) is defined as a period over which water supply is
low in streams, reservoirs, and/or groundwater (Dracup et al., 1980);
iii) agricultural drought (A-drought) is characterized by a period with
declining soil moisture and consequent crop failure (Dracup et al.,
1980); and iv) socioeconomic drought is related to the impact of
drought conditions on the supply and demand of an economic com-
modity (Mishra and Singh, 2010). To quantify droughts according to
these four types, a number of indices have been developed and imple-
mented.Multivariate drought indices that incorporatemultiple drought
information into one measurable indicator are often employed. Com-
prehensive reviews of commonly used drought indices are available
elsewhere, e.g., Dai (2011), Hao and Singh (2015), Heim (2002), and
Mishra and Singh (2010). A popular approach is to use standardized in-
dices (SI) (McKee et al., 1993; Shukla andWood, 2008; Vicente-Serrano
et al., 2010), which transform a drought relevant variable, or joint vari-
ables, into a standardized measure. This facilitates interpretability by
being independent of units and comparability across regions by using
a common standard.

The selection of an appropriate index is a crucial step in performing
drought assessments (Farahmand and AghaKouchak, 2015; Guttman,
1999; McKee et al., 1993; Shukla and Wood, 2008; Thilakarathne and
Sridhar, 2017). When employing different variables to quantify
droughts, it becomes particularly important to use a consistent statisti-
cal technique to obtain the indices, avoid making conflicting statistical
assumptions, and ensure comparability. Here we use the generalized
SI approach recently developed by Farahmand and AghaKouchak
(2015). This approach is desirable because it uses the same
empirically-based, non-parametric distribution, namely the Gringorten
plotting position (Gringorten, 1963), to derive different indices
(AghaKouchak, 2014; Kang and Sridhar, 2017; Nasrollahi et al., 2015).
Specifically, we use the approach by Farahmand and AghaKouchak
(2015) to obtain the following three drought indices: i) standardized
precipitation index (SPI) (McKee et al., 1993) for M-drought, ii) stan-
dardized runoff index (SRI) (Shukla and Wood, 2008) for H-drought,
and iii) standardized soil moisture index (SSI) (AghaKouchak, 2014)
for A-drought.

Our primary goalwith this study is to perform at the subbasin level a
multivariable drought assessment of the YRB using projected precipita-
tion, runoff, and soil moisture ensembles over the period 2021–2100. To
this end, we force a semidistributed hydrologicalmodel, namely the Soil
and Water Assessment Tool (SWAT) (Arnold et al., 1998), with down-
scaled outputs from 10 different CMIP5models and 2 different emission
scenarios. We then use the downscaled CMIP5 and hydrological model
outputs to obtain precipitation, runoff, and soil moisture and compute
the SPI, SRI, and SSI, respectively, across 125 different subbasins in the
YRB. To downscale the precipitation and temperature CMIP5 outputs,
we use amodified version of the daily bias-corrected spatial disaggrega-
tion (BCSD)method (Girvetz et al., 2013;Wood et al., 2002;Wood et al.,
2004).
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This study is more comprehensive than previous drought assess-
ments for the YRB, differing in the following key aspects. We employ
three different indices to perform the drought assessment,whereas pre-
vious studies have tended to emphasize a single index. Moreover, we
use a common statistical approach to obtain the different indices,
avoiding potential statistical inconsistencies among the indices. In con-
trast with previous studies for the YRB, the drought assessment is per-
formed at the subbasin level. Additionally, we use projected runoff
and soil moisture to determine drought conditions, whereas past stud-
ies have mostly relied on downscaled climate variables such as precipi-
tation. Some of the questionsmotivating this study are as follows:What
are the likely and dominant drought trends in the YRB for the 21st cen-
tury? Do the multimodel ensemble members agree on the direction of
drought trends? How do these trends vary among subbasins in the
YRB? How consistent are the different indices with respect to each
other in projecting droughts?

2. Study area

Our study area consists of the YRB (Fig. 1), also known as the
Changjiang basin. We select the YRB since it is one of the largest basin
in the world, which contributes significantly to both the Chinese and
global economy through export products that are directly or indirectly
supported by its water resources. The YRB drains at the mouth an area
of ~1.8 million km2. Owing to its sheer size, the YRB is comprised of a
spatially diverse climate, hydrology, pedology, physiography, and land
cover. The long-term annual precipitation ranges from 500 mm in the
West to 2500 mm in the East, with an average of ~1070 mm. The land
cover in the YRB consists primarily of forests (43.8%), agricultural
areas (28.5%) and grasslands (22.1%), some less dominant land cover
types are water bodies (1.9%), shrublands (1.4%) and urban areas
Fig. 1.Map illustrating the boundary, 125 subbasins, meteorological and streamflow gauges of
gauges used to calibrate/validate the hydrological model. Several subbasins mentioned in the t
(1.3%) (Sun et al., 2016). Further information about the physiographic
and hydroclimatological characteristics of the YRB can be found else-
where e.g., Gao et al. (2012), Guan et al. (2015), and Sun et al. (2016).

3. Datasets

3.1. CMIP5 precipitation and temperature

Weuse daily CMIP5 precipitation andmax/min temperature to force
the hydrological model SWAT and obtain projected daily runoff and soil
moisture across subbasins in the YRB over the period 2021–2100. The
daily precipitation and max/min temperature outputs are obtained for
10 different CMIP5models to consider uncertainty and inter-model var-
iability. The selected climate models are: ACCESS1-3, GFDL-CM3, GFDL-
ESM2G, GFDL-ESM2M, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MRI-
CGCM3, MIROC-ESM, and MIROC-ESM-CHEM. These models are se-
lected because their capabilities are well-documented and are known
to perform well (Nasrollahi et al., 2015; Orlowsky and Seneviratne,
2013; Venkataraman et al., 2016). For each model, the following two
Representative Concentration Pathway (RCP) scenarios are considered:
i) RCP4.5, which is a midrange mitigation emissions scenario with radi-
ative forcing stabilized at ~4.5W/m2 before 2100; and ii) RCP8.5, which
is a high emissions scenario with radiative forcing N8.5 W/m2 by 2100
(Moss et al., 2010). These two scenarios are within the core set of the
CMIP5 runs and are recommended as a first priority for assessment
studies (Taylor et al., 2012).

3.2. Data required by the hydrological model

Studies have successfully employed SWAT and CMIP5 to project
long-term streamflow or soil moisture in basins worldwide (Basheer
the Yangtze River basin (YRB). The legend highlights the subbasins and daily streamflow
ext are labeled. The inset shows the location of the YRB within China and East Asia.
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et al., 2016; Shrestha et al., 2017; Tan et al., 2017). We use the SWAT
model to project runoff and soil moisture in the YRB over the period
2021–2100. The SWAT model employed was previously developed
and calibrated on a monthly time step to study historical hydrological
conditions in the YRB (Sun et al., 2016). Here we further improve this
SWAT model by calibrating it to daily observations. To configure the
SWAT model, precipitation and max/min temperature observations,
digital soil, land cover, and terrain data are used. Precipitation and
max/min temperature are characterized using 148 daily meteorological
stations from the National Meteorological Information Center (http://
data.cma.cn/). Soils are characterized using the two-layer Harmonized
World Soil Database of the FAO (http://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/en/), which includes for the YRB 96
different soil types and their main physical properties. Land cover is
characterized using the GlobeLand30 (http://www.globallandcover.
com) dataset, which is for the year 2010with a 1 arc-second grid spatial
resolution. Terrain is characterized using Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer data (http://www.
jspacesystems.or.jp) with a 1 arc-second grid of elevation postings. To
calibrate and validate the SWAT model, daily observations from 18
streamflow gauges are used (Fig. 1). The streamflow data are obtained
from the Changjiang River Water Resources Commission (http://
www.cjh.com.cn/). Further details about the performance of the
SWAT model are included in the methodology section (Section 4).
Fig. 2. Schematic diagram illustrating the overall methodology followed in this study to perform
assembling the necessary digital data to perform the climate downscaling and configure/calibra
temperature, streamflow, digital soil, land cover, and terrain information. The CMIP5 precipitatio
reference. In the next step of the methodology, the calibrated SWATmodel is forced with the do
moisture for the period 2021–2100. The downscaled precipitation, and the projected runoff and
covering the YRB. Lastly, to characterize drought conditions, we analyze each index using diffe
further analyze the severity to assess drought trends using the Mann-Kendall method.
4. Methodology

This section describes the methodology followed to perform the
multivariable drought assessment of the YRB. An overview of the
datasets, approaches, and interdependence among different compo-
nents of the methodology is provided in the flow diagram in Fig. 2.

4.1. CMIP5 downscaling

A critical step in using global climate projection data while empha-
sizing regional detection is to postprocess, i.e. downscale and bias cor-
rect, the data. A number of statistical downscaling methods have been
developed for various research purposes and applications. The BCSD
method (Wood et al., 2002; Wood et al., 2004) is widely used to spa-
tially disaggregate and bias-correctmonthly CMIP5 outputs.Weemploy
a modified version of the BCSD suitable for handling daily projections
(Girvetz et al., 2013). The approach is described next.

To spatially downscale the climate projections, the gridded CMIP5
precipitation and temperature data are linearly interpolated onto the
148 individual weather stations in the YRB (Fig. 1). To bias-correct the
climate projections, each data point in 2006–2100 is mapped onto the
cumulative distribution function (CDF) of the historical CMIP5 data
first and then the resulting value is mapped onto the inverse CDF of
the historical observations (Gudmundsson et al., 2012; Jakob Themeßl
the multivariable drought assessment of the YRB. At the top, the methodology begins by
te the SWATmodel. The data include the CMIP5 outputs, as well as observed precipitation,
n and temperature data are downscaled using observations from the period 1954–2013 as
wnscaled CMIP5 precipitation and temperature data to generate projected runoff and soil
soilmoisture are then used to compute the SPI, SRI, and SSI, respectively, for 125 subbasins
rent drought characteristics such as the magnitude, frequency, severity, and duration. We

http://data.cma.cn/
http://data.cma.cn/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
http://www.globallandcover.com
http://www.globallandcover.com
http://www.jspacesystems.or.jp
http://www.jspacesystems.or.jp
http://www.cjh.com.cn/
http://www.cjh.com.cn/


Table 1
Summary of the SWATmodel performance. Note that the gauge numbers in the table cor-
respond to the gauge locations shown in Fig. 1.

Streamflow gauge name Gauge no. Calibration Validation

R2 NS R2 NS

Shigu 1 0.71 0.32 0.84 0.68
Panzhihua 2 0.80 0.67 0.85 0.74
Huatan 3 0.88 0.67 0.90 0.68
Pingshan 4 0.88 0.70 0.90 0.70
Gaochang 5 0.61 0.47 0.62 0.43
Zhutuo 6 0.83 0.72 0.87 0.72
Wusheng 7 0.44 0.41 0.55 0.55
Beipou 8 0.49 0.48 0.53 0.53
Cuntan 9 0.83 0.77 0.82 0.76
Wulong 10 0.52 0.46 0.57 0.40
Wanxian 11 0.84 0.78 0.84 0.79
Huanglingmiao 12 0.85 0.84 0.79 0.74
Yichang 13 0.86 0.81 0.79 0.74
Shashi 14 0.87 0.83 0.81 0.70
Chenglingji 15 0.63 0.61 0.62 0.60
Luoshan 16 0.89 0.87 0.87 0.80
Hankou 17 0.90 0.89 0.88 0.86
Datong 18 0.86 0.83 0.86 0.83
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et al., 2011; Wang and Chen, 2014). A moving window of ±15 days
(Thrasher et al., 2012) around the date of the data point in 1954–2005
is used to construct the CDFs. Empirical distributions are adopted to fit
the CDFs (Gudmundsson et al., 2012). Note that to preserve the poten-
tial long-term trend in the climate projections and avoid potential dete-
rioration of the quantile mapping (Maraun, 2016; Teutschbein and
Seibert, 2012), we remove the trend before bias correcting the raw out-
puts and then add it back after the bias correction is performed (Girvetz
et al., 2013). To handle any outliers in the empirical CDFs, we follow the
procedure of (Boé et al., 2007). The downscaling is done for the 10 se-
lected CMIP5 models for the RCP4.5 and RCP8.5 scenarios.

4.2. Hydrological model

We force the calibrated SWAT model with the downscaled CMIP5
precipitation and temperature outputs to project runoff and soil mois-
ture over the period 2021–2100. SWAT is a spatially semidistributed hy-
drological model that accounts for main hydrological processes in each
spatialmodeling unit or subbasin.We divide the YRB into 125 subbasins
(Fig. 1), the median subbasin area is ~11,191 km2. The hydrologic pro-
cesses simulated by SWAT include canopy storage, soil infiltration, re-
distribution of water within the soil profile, evapotranspiration, lateral
subsurface flow, surface runoff, ponds, channel flow, and return flow
(Arnold et al., 2012). In SWAT, after precipitation reaches the soil sur-
face, it may infiltrate into the soil profile or generate runoff. Infiltrated
watermay be held in the soil and later evapotranspired, or itmay slowly
make its way to the surface-water system via groundwater flow. Snow
is computed when temperatures are below freezing. Precipitation is
classified as rain or snow based on the average daily temperature.
Snowmelt is controlled by the air temperature, snowpack temperature,
the melting rate, and the snow areal coverage. Melted snow is treated
the same as rainfall for estimating runoff and percolation. Within
SWAT, we use the SCS curve number, the Priestley-Taylor method,
and the variable storage coefficientmethod tomodel surface runoff, po-
tential evapotranspiration, and channel flow routing, respectively. A ki-
nematic storage model is used to model lateral flow in each soil layer.

The performance of the calibrated SWAT model is evaluated at the
18 hydrological stations in the YRB, each station with 21-year long con-
secutive daily discharge observations. Although the temporal resolution
of this study is monthly, the SWAT model is calibrated and validated
using daily observations to improve model accuracy. The calibration
and validation period are 15 years (Jan. 1st 1990–Dec. 31st 2004) and
6 years (Jan. 1st 2005–Dec. 31st 2010), respectively. To assess the per-
formance of the SWAT model, the coefficient of determination, R2, and
the Nash-Sutcliffe coefficient, NS, are used (Table 1). Overall, the
model performs reasonably well with median R2 and NS values of 0.84
and 0.71, respectively, for the combined calibration and validation pe-
riod (1990–2010). Thus, the model is deemed suitable for investigating
the impacts on droughts of climate projections in the YRB.

4.3. Standardized drought indices

We use the downscaled CMIP5 monthly precipitation to calculate
the SPI, and the projected monthly runoff and soil moisture from the
SWAT model to compute the SRI and SSI, respectively. Note that the
SPI, SRI, and SSI are used to represent M-drought, H-drought, and A-
drought, respectively. Monthly precipitation, runoff, and soil moisture
are estimated for each subbasin. Specifically, precipitation for a single
subbasin is the monthly average precipitation falling on the subbasin
area during a given month. Runoff is the monthly net average amount
of water that leaves the subbasin area to a river reach. Soil moisture is
the monthly average amount of water in the soil profile of a subbasin
area within a maximum depth of 100 cm from the top of the soil.

To obtain the indices for the historical period, we follow the ap-
proach by Farahmand and AghaKouchak (2015). For this, we let x(t)
represent the monthly data at time t. For a given n-month timescale
(e.g., 3-, 6-, or 12-months), the accumulated variable Xn(t) is calculated
as follows:

Xn tð Þ ¼ ∑t
t−nþ1x tð Þ: ð1Þ

The time series Xn(t) is then subdivided into subseries Sn(m)with re-
spect to a particular month m such that

Sn mð Þ ¼ Xn mð Þ;Xn 1� 12þmð Þ;…;Xn N−1ð Þ � 12þmð Þ½ � ð2Þ

where m = 1, 2, …, 12 represents the calendar months, and N is the
number of years considered. The empirical Gringorten plotting position
is used to compute the cumulative frequency of Sn(m) as follows:

Pnm ið Þ ¼ inm−0:44
N þ 0:12

ð3Þ

where inm denotes the rank of Sn(m) from the smallest to the highest,
and Pnm(i) is the estimate of the cumulative frequency of the ith term
in the month m. The empirical probabilities are transformed into the
standard normal distribution function according to

SInm ¼ Φ−1 Pnmð Þ ð4Þ

where SInm denotes the standardized index for month m and timescale
n, and Φ denotes the standard normal distribution function
(AghaKouchak, 2014; Farahmand and AghaKouchak, 2015).

Note that in this case the SInm is equal to SPI, SRI, or SSI when x(t) is
set equal to precipitation, runoff, or soil moisture, respectively. The
timescale n is selected depending on the research and user needs, and
scales of 3-, 6-, and 12-months are commonly adopted (Orlowsky and
Seneviratne, 2013). Short-term durations spanning a few months may
be particularly relevant to meteorological (Vicente-Serrano et al.,
2010) and agricultural (Guttman, 1999) applications, while long-term
durations may be relevant for water supply management purposes
(Heim, 2002). We use a 3-month duration since both meteorological
and agricultural droughts are an important concern in the YRB.

To compute the SInm values for the projected precipitation, runoff,
and soil moisture data in the period 2021–2100, we use the mapping
between the values of Sn(m) and SInm for the baseline (historical) period
(1954–2013). That is, the SInm values for the projected data are deter-
mined in reference to the historical SInm values. In thisway, for example,
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when an increase in drought severity is identified in the projected data,
this increase is relative to the historical drought conditions.

4.4. Drought characteristics

To further characterize droughts in the YRB, the drought indices are
used to compute the drought severity, duration, frequency, and magni-
tude. To compute the drought severity, duration, and frequency, one
must first define what a drought event is. Typically, a low statistical
threshold or trigger point is used. Thus, we define drought events as a
period in which the SI values are continuously below the threshold SI
= -0.8, corresponding to ~20% of the time series, which is a commonly
used drought threshold (AghaKouchak, 2014; Svoboda et al., 2002).
Note that our definition of drought includes the date when the SI first
drops below the selected threshold as the beginning, and the date be-
fore the SI first climb above the threshold as the end. Accordingly, the
drought duration is the number of consecutive months within one
drought event; the drought severity is the positive sum of all the SI
values within one drought event; and the drought frequency is calcu-
lated as the number of drought occurrences within a decade. Addition-
ally, we also compute the drought magnitude based on the drought
category for each month following the U.S. Drought Monitor
classification (Svoboda et al., 2002). The classification is as follows: D1
(moderate drought, 10–20%), D2 (severe drought, 5–10%), D3 (extreme
drought, 2–5%), and D4 (exceptional drought, b2%) (Svoboda et al.,
2002).

4.5. Drought trend analysis

Another important aspect of drought assessment is to identify po-
tential trends in the drought characteristics. Thus, trend detection is
performed on the drought severity at the subbasin level. The aim with
this is to identify regional drought patterns based on the three different
SI used in this study. The Mann-Kendall (MK) method (Kendall, 1955;
Mann, 1945) is employed for the trend analysis. The MK is a nonpara-
metric method for detecting the significance of monotonic trends in
time series data. To summarize our trend analysis results, based on
the sign of the trend (MK's tau, τ) and the level of significance (p-
value), we classify the results into the following 5 categories (López-
Moreno et al., 2011; Westmacott and Burn, 1997): i) strong decreasing
trend (−2): τ b 0 and p-value ≤0.05; ii) moderate decreasing trend
(−1): τ b 0 and 0.05 b p-value ≤0.1; iii) non-significant trend (0): p-
value N0.1; iv) moderate increasing trend (1): τ ≥ 0 and 0.05 b p-value
≤0.1; and v) strong increasing trend (2): τ ≥ 0 and p-value ≤0.05. Note
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that decreasing (negative) trends indicate a wetting tendency while in-
creasing (positive) trends indicate a drying tendency.

5. Results and discussion

5.1. Performance of the downscaled precipitation and temperature CMIP5
outputs

Fig. 3 illustrates the performance of the areal averaged, downscaled,
daily CMIP5 precipitation and max/min temperature outputs for the
RCP4.5 (left panels) and RCP8.5 (right panels) scenarios. In all the
panels in Fig. 3, it can be seen that there is a large bias between the
raw CMIP5 outputs (blue line in the period 2006–2100) and the obser-
vations (black line in the period 1954–2005). For example, at around
the year 2005, the raw CMIP5 max temperature for RCP4.5 (Fig. 3c) is
~14 °C while the historical maximum temperature is ~18 °C. It can also
be seen in Fig. 3 that after the BCSDmethod is applied the bias is largely
corrected so that the future projected data (yellow line in the period
2006–2100) aligns well with the observations (black line in the period
1954–2005). For the YRB, the overall bias of the raw CMIP5 outputs is
to overestimate precipitation (+0.48 mm/day on average), and under-
estimate themaximum (−4.04 °C) andminimum (−2.68 °C) tempera-
tures. The panels in Fig. 3 also show that the overall trend in the raw
CMIP5 outputs (2006–2100) is preserved after downscaling (yellow
line in the period 2006–2100). For instance, the R2 between the raw
and downscaled RCPs is on average equal to ~0.80. Note that in Fig. 3
the historical and future projected periods are defined as 1954–2005
and 2006–2100, respectively, which is how these periods are defined
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Fig. 4. Projected (2021–2100) decadal variations in the a) precipitation, b) runoff, and c) soil mo
medians are computed from the areal average over the YRB for each of the 10 selected CMIP5m
selected CMIP5models under the RCP4.5 (in orange) and RCP8.5 (in orchid) scenarios. The trend
0.05 significance level. In panels d-f, the models with a significant trend are shown using bars
in the CMIP5 dataset. For the remaining figures and results, however,
we use the periods 1954–2013 and 2021–2100 to represent the histor-
ical and future projected years, respectively. This redefinition captures
the period with available observations for the YRB (1954–2013) and
the relevant future years (2021–2100).

Fig. 3 also shows the variability of the 10 selected CMIP5 models or
ensembles over the historical period (1954–2005); the variability is
larger for precipitation (Figs. 3a-b) than max/min temperature
(Figs. 3c-f). However, during the historical period, the observed and
raw CMIP5 precipitation ensembles tend to overlap with each other
for some of the CMIP5 models, whereas in the case of temperature the
bias consistently affects all the models. After downscaling, the overall
trends for the YRB over the future projected period consist of:
i) increase in precipitation of ~0.40 mm/day (+14.35%) and
0.58 mm/day (+20.65%) for RCP4.5 and RCP8.5, respectively; ii) in-
crease in maximum temperature of ~2.95 °C (+15.93%) and 6.17 °C
(+32.85%) for RCP4.5 and RCP8.5, respectively; and iii) increase inmin-
imum temperature of ~2.63 °C (+30.03%) and 5.76 °C (+64.33%) for
RCP4.5 and 8.5, respectively. These overall trends indicate that the in-
crease in precipitationmay be, in some cases, counteracted by enhanced
evapotranspiration in the YRB. The trends suggest that, in terms of run-
off and soilmoisture, bothwetting and drying can be expected, depend-
ing on the relative difference between the projected increase in
precipitation and temperature. The trends support the need to investi-
gate the effects of future climate projections across subbasins of the
YRB, as done in this study, to understand how regional landscape condi-
tions at the subbasin level may interact with the future climate to pro-
duce different wetting/drying patterns and trends across the YRB.
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5.2. Variations in projected precipitation, runoff, and soil moisture

We assess here the overall trend over the entire YRB of the future
projected precipitation, runoff, and soil moisture variables, as these
trends can have a strong influence on the determination of the different
drought types and characteristics. To this end, monthly variables are
spatially averaged across the 125 subbasins of the YRB, and are further
averaged to a decadal timescale, i.e. the average daily value in a decade.
Linear regression is performed on these decadal values to assess
changes in precipitation, runoff, and soil moisture at the spatial scale
of the entire YRB. We determine the ensemble median associated with
each variable over decadal intervals for the future projected period
(2021–2100). That is, we compute for every non-overlapping decade
in the period 2021–2100 (8 different decades in total) the ensemble
median and linear trend associatedwith the decadal values of precipita-
tion, runoff, and soil moisture.

The decadal variations in the ensemble median over the period
2021–2100 for precipitation, runoff, and soil moisture show an increas-
ing trend (Fig. 4a–c) in the YRB. This is the case for both scenarios,
RCP4.5 and RCP8.5. Specifically, we find that the precipitation ensemble
median (Fig. 4a) is expected to increase by ~0.03 and 0.06 mm/day/de-
cade under the RCP4.5 andRCP8.5 scenarios, respectively; the runoff en-
semble median (Fig. 4b) is expected to increase by ~0.03 and 0.05 mm/
day/decade under the RCP4.5 and RCP8.5 scenarios, respectively; and
the soil moisture ensemble median (Fig. 4c) is expected to increase by
~0.22 and 0.14 mm/decade under the RCP4.5 and RCP8.5 scenarios, re-
spectively. These trends are all significant at the 5% level, except for
the soil moisture ensemble median under the RCP8.5 scenario
Fig. 5. Classification of future projected (2021–2100) drought frequencies with respect to the b
D4) of the U.S. DroughtMonitor. The frequency is calculated as the average occurrence time of e
CMIP5models under both the RCP4.5 and RCP8.5 scenarios. The solid lines indicate the historica
circles represent the future projected values for each of the 10 CMIP5 models.
(Fig. 4c). Thus, the results in Fig. 4a–c indicate that the overall expected
trend for the YRB is increased wetting. It is expected that with increas-
ing future precipitation, runoff will also increase in the YRB. Indeed,
the average R2 value between the precipitation and runoff ensembles
is 0.96, indicating that the decadal increases in runoff follow closely
the precipitation increments. For soil moisture, the wetting trend is
less pronounced. Precipitation becomes runoff and soil moisture
through the interaction among several governing factors such as tem-
perature, vegetation, land surface properties, and soil composition
(Sehgal and Sridhar, 2019). The increasing trend in precipitation has a
direct effect on runoff and soil moisture, while the increasing trend in
temperature has a counteractive effect. Temperature has a more im-
pactful effect on soil moisture because, with respect to land surface
evapotranspiration, soil moisture has a wider and deeper feedback
loop than runoff.

This last result can be better illustrated by analyzing the linear trend
associated with each of the CMIP5 models considered (Fig. 4d–f) rather
than the ensemblemedian. In the case of precipitation (Fig. 4d) and run-
off (Fig. 4e), it can be seen that the trends for the individual models are
similar for precipitation and runoff, and the majority of the models
agree on the sign of the trend (17 out of the 20 model projections con-
sidered, i.e. 10 models × 2 scenarios, show an increasing trend, and out
of those 17, 10/11 (precipitation/runoff) show a significant wetting
trend). The results are more mixed in the case of soil moisture; 14 out
of the 20 model projections show increasing trends and out of those
14, only 4 are significant trends. These results are relevant to the YRB
and highlight the need to use different variables and climate models
when analyzing droughts. The results show how in terms of soil
aseline, historical period (1954–2013) using themagnitude categories (i.e. D1, D2, D3, and
ach droughtmagnitude in one decade. The classification is done for each of the 10 selected
l frequencies associatedwith the different droughtmagnitude categories,while the colored
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moisture, which is critical to agricultural activities in the YRB, the wet-
ting trend is weaker than in precipitation and is less consistent across
the CMIP5 models. An analysis based only on precipitation trends will
tend to miss these potential impacts of climate projections that are of
immediate concern to economic activities in the YRB. Now that we
have identified the overall trends in the YRB for the variables used to
compute the drought indices, we examine next the effect of future pro-
jections on the different drought characteristics.
5.3. Comparison between projected and historical drought magnitudes

We use in this subsection drought magnitudes to assess drought
conditions over the entire YRB during the future projected period
(2021–2100). This drought characteristic is computed for the different
drought types considered, i.e., M-drought, H-drought, and A-drought.
Recall that the drought indices SPI, SRI, and SSI are used to represent
the M-drought, H-drought, and A-drought, respectively, and
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We find that there aremarked differences between the baseline, his-
torical drought magnitudes and the future projected ones for the M-
drought, H-drought, and A-drought (Fig. 5). The historical levels for
D1, D2, D3 and D4 frequencies are, on average, 24, 12, 6, and 2.4 occur-
rence times per decade, respectively. While the corresponding levels of
mixed scenarios for precipitation are 7.9, 5.8, 6.4 and 9.5, respectively;
for runoff are 5.2, 4.5, 8.4 and 10.5, respectively; and for soil moisture
are 8.3, 6.1, 7.5 and 12.8, respectively. Specifically, the frequency of
moderate, D1, and severe, D2, droughts decreases for the projected
data relative to the historical data for all three drought types. This be-
havior reverses for the extreme, D3, and exceptional, D4, droughts, i.e.
D3 and D4 droughts become more frequent in the projected data rela-
tive to the historical levels. The increase in D4 frequency is more severe
for the A-drought than theM- andH-drought. This is important because
it suggests that, according to projected drought trends for the YRB, the
agricultural sector may be disproportionately at risk compared to
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other sectors, such as hydropower and urban water supply, which may
be more directly dependent on runoff than soil moisture. Nonetheless,
independently of the drought type, the overall tendency during the
projected period is for the YRB to shift toward amore severe drought di-
rection (Fig. 5), where moderate droughts are anticipated to decrease
while extreme and exceptional ones increase. This shift in drought se-
verity is an important outcome. It suggests the need for future water-
related planning in the YRB to account for more frequent extreme
drought conditions than implied by historical observations.

5.4. Projected drought characteristics: severity, frequency, and duration

We assess the effect of the projected CMIP5 precipitation and tem-
perature outputs on the severity of the three different drought types
over the entire YRB. Recall that severity is computed, in this case, by de-
fining droughts using a threshold of 20% or SI = −0.8. The severity is
determined for each drought type in each of the 8 decades in the
projected period 2021–2100. We find a decreasing (wetting) temporal
trend for the M-drought and H-drought, for both the RCP4.5 and
RCP8.5 scenarios (Fig. 6a–d). In the case of the A-drought, the RCP4.5
scenario shows a mild decreasing trend (Fig. 6e), while a slight increas-
ing (drying) trend (Fig. 6f) is only found for the RCP8.5 scenario. Overall,
these results indicate a wetting tendency for the entire YRB. This is con-
sistentwith our previous results (Fig. 5),which show thatmoderate and
severe droughts are expected to decrease in the YRB.

Anotherway to assess differences in the drought characteristics over
theYRB between the historical and futureprojectedperiod is by plotting
the drought frequency against the average duration (Fig. 7). In particu-
lar, for all the three different drought types, we find that the drought
Fig. 7. Plot of the decadal drought frequency against duration for both the historical (1954–2
represents the value in a particular decade; the historical period covers 6 different decades. Fo
particular decade. Hence, since 10 models are used over 8 different decades (2021–2100), a to
durations increase for the future projected period relative to the histor-
ical data. For instance, the longest average duration for the A-drought is
~3.5 months for the historical period while for the future projected pe-
riod the longest duration is ~8.3 months (Fig. 7). In terms of frequency,
the behavior of the historical and future projected droughts appears
similar. Taken together, these results alongside the ones for the drought
magnitude characterization (D1, D2, D3 and D4 in Fig. 5) indicate that,
over theYRB, themain effect of the future projectedCMIP5precipitation
and temperature outputs is to increase the duration and magnitude
(frommoderate and severe to extreme and exceptional) of the different
drought types.

Comparing the future projected frequency and duration for the dif-
ferent drought types against each other (Fig. 7), the M-drought has
the highest frequency but lowest duration, while the H-drought and
A-drought are less frequent and prolonged in duration. These differ-
ences in the frequency and duration of the three drought types under-
score the fact that the variables used to determine the drought types
can respond differently to drought conditions. For example, the drought
duration is known to vary depending on the variable used to define the
drought (Shukla andWood, 2008;Wilhite and Glantz, 1985;Mo, 2011).
In the case of theM-drought, precipitation deficitsmay develop rapidly,
while runoff and soil moisture tend to show a delayed response to pre-
cipitation (Entekhabi et al., 1996). In addition, precipitation deficits can
end abruptly (e.g., overnight in some cases), while a lag exists between
the time an M-drought ends and the time required for the runoff and
soil moisture levels to recover from the drought (Heim, 2002; Zhu
et al., 2016). Furthermore, a precipitation deficit may not necessarily
lead to a runoff or soil moisture deficit (Vicente-Serrano et al., 2011).
For example, a short-term, mild-intensity precipitation deficit may
013) and projected (2021–2100) periods. For the historical period, each point in the plot
r the projected period, each point represents the value for one of the CMIP5 models in a
tal of 80 data points are shown for each drought type.
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have little impact on runoff levels in a large river. In summary, our re-
sults in Fig. 7 indicate that, in terms of frequency, precipitation is more
sensitive in detecting droughts, or can capture the drought onset earlier,
than runoff and soil moisture. In terms of duration, runoff and soil mois-
ture capture drought persistencemore reliably than precipitation. These
drought behaviors for different variables, in terms of frequency and du-
ration, have been reported in a few other studies (e.g., AghaKouchak,
2014; Dracup et al., 1980; Hao and AghaKouchak, 2013) but not for
the YRB. The combined analysis of duration and frequency is done for
the first time here for the YRB (Fig. 7).

5.5. Spatial patterns of projected drought severity trends

Our previous results provide an integrated assessment of drought
conditions for the whole YRB. Further insight, however, can be gained
by analyzing droughts at the individual subbasin level, as regional dif-
ferences, e.g., climate (Bisht et al., 2019), land use (Sehgal and Sridhar,
2018), and topography (Sehgal et al., 2018), can affect drought severity.
This is particularly important for the YRB since, due to its sheer size, re-
gional knowledge is needed to inform and enhance drought planning
and management. We carry out the MK trend analysis for drought se-
verity in the 125 subbasins of the YRB. Recall that in the MK trend anal-
ysis, the values of −2, −1, 0, 1, and 2 indicate strong decreasing,
moderate decreasing, non-significant, moderate increasing, and strong
increasing trend, respectively. From the spatially explicit MK trend
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Fig. 8. Projected (2021–2100) spatial variability of drought severity trends in the 125 subbasin
CMIP5 models considered. Note that values of −2, −1, 0, 1, and 2 indicate strong decreasing,
respectively (i.e., increasing positive values indicate a stronger drying trend, while increasing n
analysis, we find that the trends in most of the subbasins are non-
significant (yellow areas) for the M-drought (area ratios of 59.6% and
67.6% for the RCP4.5 and RCP8.5 scenarios, respectively, Fig. 8a–d) and
H-drought (area ratios of 49.8% and 57.3% for the RCP4.5 and RCP8.5
scenarios, respectively, Fig. 8b–e). While in the remaining subbasins
the trends are all decreasing (blue areas). This is the case for both the
RCP4.5 and RCP8.5 scenarios. The A-drought also shows mostly non-
significant trends for both scenarios (area ratios of 79.8% and 76.6% for
the RCP4.5 and RCP8.5 scenarios, respectively, Fig. 8c–f), but with a
few areas revealing a generally increasing trend (red color, area ratios
of 12.6% and 23.4% for the RCP4.5 and RCP8.5 scenarios, respectively).
The similarity between the spatial patterns of M- and H-drought sever-
ity highlight the high correlation and strong causal link between precip-
itation and runoff. The differences in the spatial patterns of the A-
drought, relative to the M- and H-drought, underscore the high impor-
tance of evapotranspiration in redistributing water and impacting soil
moisture in the YRB.

Figs. 9 and 10 map the trends in drought severity for each of the 10
CMIP5 models across the 125 subbasins of the YRB for scenarios RCP4.5
and RCP8.5, respectively. These figures show the inter-model variability
for the different drought types. Overall, both the decreasing trend in M-
and H-drought and the increasing trend in A-drought are consistent
with the patterns indicated by the multimodel ensemble. The trends
in drought severity tend to bemore pronounced for the RCP8.5 scenario
compared to RCP4.5. Figs. 9 and 10 reveal that projected drought
(d) M−drought severity RCP8.5

(e) H−drought severity RCP8.5
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s comprising the YRB. The trend analysis is performed on the ensemble median of all the
moderate decreasing, non-significant, moderate increasing, and strong increasing trend,
egative ones indicate a wetting trend).
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severity can vary widely among the models. For example, area ratios
with decreasing trend for the M-drought under the RCP 4.5 scenario
can vary from 1.3% (GFDL-ESM2M) to 43.8% (ACCESS1-3) among all
the 10 models; and area ratios with increasing trend for the A-drought
under the RCP8.5 scenario can vary from 4.2% (MIROC5) to 74.2%
(IPSL-CM5A-MR). Despite this variability, consistent patterns can be
identified for some areas in the YRB,where the effect of biophysical het-
erogeneities can be seen to interact with the CMIP5 projections to de-
fine drought conditions. Based on this, we identify next geographic
regions in the YRB that could benefit from drought planning that incor-
porates projected information.

The headwater areas (near the Tibetan Plateau) of the YRB, roughly
defined as subbasins 1, 2, 3, 4, 5, 6, 97, 98 and 104 (Fig. 1), tend to show
an increasing (drying) A-drought trend, and a decreasing (wetting) M-
drought and H-drought trend. Unfavorable biophysical conditions, in-
cluding high elevations, steep slope gradients, shallow land cover, and
gravelly soils, make these headwater areas susceptible to aggravated
A-droughts. The high elevations and steep slope gradients result in
rapid runoff drainage. The dominant land cover in these headwater
areas is grassland, which has shallow root depth with relatively low
ability to hold and store water. Additionally, the main soil type in
these headwater areas is Leptosol, which favors lower soil moisture
levels due to this soil's gravelly form, with continuous rock at or very
close to the surface (FAO, 2014), and high infiltration rates. All of
these conditions could exacerbate droughts in this region. By acting
early in the implementation of drought management, some of the neg-
ative consequences of future droughts could be prevented.

Another region is the area around subbasin 80 (Fig. 1), where 6 out
of the 10 models for the RCP8.5 scenario project an increasing A-
drought severity (Fig. 10). This area approximately covers the boundary
between two Chinese provinces (Sichuan and Guizhou) and the area in
one province-level municipality (Chongqing). This area is one of the
most developed areas in the YRB, where future drought impacts could
result in substantial economic losses. For example, the Chengdu plain
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Fig. 10. As in Fig. 9 but for the RCP8.5 scenario.
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is located in this region, which is one of China's fertile bread baskets
(Xiang, 2014). A strong linear relationship between SSI values and agri-
cultural production was reported by Kang et al. (2019). This region
should be a priority to avoid future drought conditions having an ad-
verse effect on its agricultural production. Moreover, we recommend
that attention should be paid, in terms of droughtmonitoring and plan-
ning, to all the geographical areas revealing a projected drying of soil
moisture so that mitigation actions can be taken before future drought
conditions have a strong negative impact on those areas' socioeconomic
activities and ecosystems.

6. Conclusions

This study projects future meteorological, hydrological, and agricul-
tural droughts for the period 2021–2100 in the YRB, China. For this, pre-
cipitation and max/min temperatures from 10 CMIP5 climate models,
under both the RCP4.5 and RCP8.5 emission scenarios, are spatially
downscaled and bias-corrected to force the SWAT hydrological model.
Projected runoff and soil moisture derived from the SWAT model
outputs, along with bias-corrected precipitation, are used to character-
ize future H-drought, A-drought, and M-drought, respectively. Drought
characteristics of severity, duration, frequency, and magnitude for the
three drought types are analyzed and compared at the spatial scale of
both the entire YRB and 125 subbasins. On the basis of our results, we
emphasize the following conclusions:

The downscaled CMIP5 trends for the entire YRB over the projected
period (2021–2100) indicate increasing precipitation, maximum tem-
perature, and minimum temperature for both RCP4.5 and RCP8.5 sce-
narios. The increases tend to be larger for temperature than
precipitation. These results highlight the need to analyze different
drought variables, rather than relying solely on CMIP5 outputs, when
assessing future drought conditions in the YRB, as the effects of increas-
ing precipitation and temperature can counteract each other in terms of
hydrological variables, e.g., soil moisture.

Projected precipitation and runoff for the entire YRB show a signifi-
cant increasing trend for both RCP4.5 and RCP8.5 scenarios, with the
majority of the CMIP5 models agreeing on the sign of the trend. In the
case of soil moisture, the wetting trend tends to be weaker and less
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consistent across the CMIP5 models. These results indicate that future
hydrological conditions in the YRB are likely to have an unequal impact
on different economic sectors. For example, the increasing runoff trend
may be beneficial to hydroelectricity generation while the soil moisture
trends suggest greater risks for agriculture.

The main effect of the projected CMIP5 precipitation and tempera-
ture outputs is to increase the magnitude and duration of the different
drought types. Specifically, projected drought magnitudes in the YRB
are anticipated to shift toward increasing severity as indicated by the in-
creased frequency in extreme and exceptional droughts (D3 and D4)
relative to the historical period. This increase in frequency is more se-
vere for the A-drought (+10.4 occurrence times/decade) than the M-
(+7.1 occurrence times/decade) and H-drought (+8.1 occurrence
times/decade). Drought durations are also expected to increase for the
projected period. These findings emphasize the need for water man-
agers in the YRB to plan for worsening future drought conditions, de-
spite the increasing trend in precipitation and runoff. Overall, the
drought variables considered in the YRB respond differently to future
drought conditions. In terms of frequency, precipitation is more sensi-
tive in detecting droughts, or can capture the drought onset earlier
than runoff and soil moisture. In terms of duration, runoff and soil mois-
ture are more able to reliably capture drought persistence than precip-
itation. The different response of the drought variables highlights the
importance of adopting suitable variables to inform different economic
activities and sectors in the YRB.

The spatial pattern of future projected drought severity for the M-
drought and H-drought reveals a largely non-significant trend in the
majority of the subbasins. The remaining subbasins all show a decreas-
ing trend. This is the case for both the RCP4.5 and RCP8.5 scenarios. The
A-drought also shows mostly non-significant trends for both scenarios,
but with a few areas revealing a generally increasing trend. These are
geographical where special attention is needed to mitigate future
drought impacts.
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