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Abstract: Technology transfer has become a vital pipeline for acquiring external knowledge.
The purpose of this paper is to portray the spatial dynamics of intercity technology transfer networks
in China’s three urban agglomerations based on patent right transaction data from 2008 to 2015.
The integration of social networks and spatial visualization is used to explore spatial networks and
influencing variables of the networks. The results demonstrate that Beijing, Shanghai, and Shenzhen
are emerging as hubs in the three urban agglomerations. The spatial distributions of degree and
weighted degree are significantly heterogeneous and hierarchical. The larger cities play the role
of a knowledge and technology incubator, highly related to their economic scale, research and
development (R&D) input, and innovation output. The evolution of intercity technology linkages
is driven by the networking mechanisms of preferential attachment, hierarchical and contagious
diffusion, path dependence, and path breaking. Moreover, we found that the geographical proximity
and technology gaps are determinants of the strength of intercity technology linkages. As a result,
it has been discovered that the network in the Beijing–Tianjin–Hebei agglomeration is organized in a
tree network, while the Yangtze River Delta features a polycentric network and the Pearl River Delta
has multi-star characteristics.

Keywords: technology transfer; patent transaction; spatial dynamics; urban agglomerations;
social network analysis; China

1. Introduction

Knowledge flow and transfer have become the focus of innovation geography and urban studies
in the globalized knowledge economy [1–3]. The New Economic Growth Theory holds that the
progress of knowledge and technology has become an important driver for modern economic
growth [4]. International technology transfer plays an enhanced role in driving national economic
growth [5]. Over the past decades, there has been a notable increment in the number of technology
transactions among different entities. This indicates that technology transfer has become an important
means for any country, region, or city to acquire external technical knowledge [6]. In other words,
technology transfer provided a single city or region with opportunities to gain knowledge from others.
As the scale of knowledge and technology continues to expand, the relationship among different
entities becomes more and more complex through knowledge exchange. Innovation networks have
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become a critical form of innovation activity [7]. Regional performance is related to both network
connectivity and position in addition to internal innovation capacity [8]. Most literature in innovation
network studies has focused on influencing factors, the relationship between network structure and
regional innovation performance, and the spatial patterns of innovation collaboration networks [9–14].
However, little attention has been paid to the spatial dynamic of innovation networks based on the
perspective of technology transfer. Thus, in this paper, we explore a pilot study of dynamic urban
technology transfer networks from a patent right transaction perspective.

Big cities have a higher level of open innovation [15]. Urban agglomerations have become
an economic core of regions relying on well-developed intercity transportation networks and close
economic ties [16]. Thus, urban agglomerations have become innovation poles for the accumulation
of innovative elements [17]. Urban agglomerations play the role of the “incubator” of knowledge
production within national urban systems, and they also act as the hub of technological mobility that
links national and international urban systems [18,19]. Technology flows can further support and
promote the integrated development of urban agglomerations [20]. However, little attention has been
paid to these technology flows within urban agglomerations.

There are currently two main streams of innovation networks research. The first concerns the
influencing factors of innovation. Past research suggests that proximity is an important factor of
innovation networks [21,22]. Boschma (2005) defined proximity from five dimensions, including
cognitive, organizational, social, institutional, and geographical proximity [23]. Hoekman et al. (2009)
confirmed the effects of geographical and institutional proximity on the collaboration of scientific
publications and patents in Europe [24]. Ma et al. (2014) found that the impact of geographical
proximity on scientific cooperation became stronger with the development of information technology
in China [25]. Cognitive, organizational, and social proximity have also been studied by scholars [26,27].
Moreover, urban, industrial, and technological gaps, as well as innovation capacity, are also considered
to affect innovation linkages [28–31].

The second stream focuses on regional innovation performance and spatial patterns of innovation
networks. The emergence of the network paradigm has helped us understand the innovation network
structure [32]. Regions with higher centrality usually have stronger innovation performance and
regions without independent innovation capability rely more on external network links [33–35].
Moreover, most spatial patterns of innovation network research are mainly based on co-publication
and co-patents because of the increased accessibility of patent citation and scientific collaboration
data [36–38]. However, innovation networks are undirected when based on collaboration data. There is
no obvious source and destination city when two or more co-authors or co-inventors are involved
in a paper or patent. It is also difficult to reflect the vector characteristics of flow spaces. Moreover,
Andersson et al. (2014) found that unlike in Europe and the United States, the political barriers are
becoming more significant to Chinese scientific cooperation [39]. Thus, the collaborative linkages
involving Beijing and provincial capitals may be overestimated, while those of some cities such as
Shenzhen and Suzhou may be underestimated. In this way, the collaborative relational data may not
reflect general market-led knowledge flows.

To fill those gaps, patent right transactions are an appropriate index for constructing a directed
and weighted innovation network [40]. One major advantage of using patent right transaction data
is that we can construct a directed urban innovation network, unlike with scientific collaboration
data. Moreover, the data can visually reflect the supply–demand relationship of technology
markets and avoid political bias [41]. To date, most literature on patent transaction transfer has
mainly documented the intrinsic characteristics of patents [40,42,43] and the drivers of patent
transactions [44–49]. Instead, this study paid close attention to the spatial characteristics of patent
transfers rather than the characteristics of patent transactions. Moreover, existing empirical studies of
cross-location technology transfers have mainly focused on the transnational level [6], inter-regional
level [50], and inter-organizational level [32]. Thus, intercity technology transfer has remained
an under-developed topic in economic geography. Furthermore, urban agglomerations have
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different geographical contexts with different effects on innovation performance and flows. Hence,
two questions need to be answered: what are the similarities and differences of spatial flows of intercity
technology transfer within urban agglomerations, and what are the determinants of geographical
contexts driving the spatial dynamics? The three major urban agglomerations in China are selected
to represent this topic, based on a social network approach. This study’s aims are twofold—one is
to comparatively analyze the spatial heterogeneities of the interurban technology transfer networks,
and the other is to shed more light on the drivers of their dynamic spatial variations.

The remainder of this paper is organized as follows. Section 2 presents the study area,
data processing, and research methods. Section 3 demonstrates the spatial patterns of intercity transfer
networks from nodal centralities, flows, and determinants. Section 4 summarizes the conclusions and
future research opportunities.

2. Data and Methods

2.1. Study Area

The study areas include Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), and the
Pearl River Delta (PRD) (Figure 1), which are the largest and most competitive urban agglomerations
in China. These areas are important centers of trade, commerce, and innovation, and feature a large
talent pool along with high-tech industry [51]. In 2016, the population in these areas accounted for
23.5% of China’s total population, 5.4% of the nation’s land area, and over 40% of its gross domestic
product (GDP).

The BTH urban agglomeration consists of three province-level areas, including Beijing (capital
and municipality), Tianjin (municipality), and Hebei Province, with 11 cities. Shijiazhuang is the
provincial capital of Hebei, and the other 10 cities are prefecture-level cities. The BTH region
contains the most important political, cultural, and economic centers in China. The YRD urban
agglomeration is composed of four province-level areas, including Shanghai (municipality), Jiangsu
Province, Zhejiang Province, and parts of Anhui Province. Among 25 other cities, there are three
provincial capitals (Nanjing of Jiangsu Province, Hangzhou of Zhejiang Province, and Hefei of
Anhui Province), a vice-provincial city (Ningbo of Zhejiang Province), and 21 prefecture-level cities.
The YRD region features the largest urban agglomeration in China with well-developed transportation
infrastructure and economic connections. There are 14 cities in the PRD urban agglomeration, including
Guangzhou (the provincial capital of Guangdong Province), Shenzhen (the vice-provincial city),
and the 12 prefecture-level cities in Guangdong Province. The PRD region is the base for national
technological innovation and research and development (R&D) investment. The specific cities of each
area are listed in Table A1 of Appendix A. These three urban agglomerations together constitute the
center of the national economy and technological innovation.

2.2. Data Sources and Processing

The patent data, including patent citations, patent cooperation, and patent right transactions,
have been used in many studies to measure technical interactions and knowledge flows [11,12,36,52,53].
Patent right transaction data refer to records of an assignor selling patent ownership to an assignee.
These records provide the ‘source–sink’ relationship (or origin and destination) of patent right
flows. Consequently, patent transactions offer a useful perspective to explore spatial connections of
interregional technology transfers [40,54]. From the date of application, every change in the owner
of a patent is recorded in detail in the patent’s legal status (patent application number, patent name,
patent classification number, assignor and address, assignee and address, patent application time,
patent grant time, and patent transfer time) by China National Intellectual Property Administration
(CNIPA) (http://www.cnipa.gov.cn/).

http://www.cnipa.gov.cn/
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There are also some drawbacks in measuring technology transfer from the perspective of patent
right transactions. First, technology transfer carriers do not only rely on patents. There are also many
other ways to transfer technology, such as investment, equipment, talent, other codified types of
knowledge, and tacit knowledge. Secondly, most technology patent flows are measured by patent
licensing and patent right transactions [55]. Thus, patent right transactions are only a part of technology
patents flows. We do not have data available for patent licensing transactions, but patent right
transaction data have been proven to be a practical dataset to explore spatial dynamics of technology
transfer [40]. Thus, in this study, patent right transaction data from 1 January 2008 to 31 December 2015
were mined to explore the spatial flows of technology transfer networks within urban agglomerations.
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The process for extracting the patent transfer data from the CNIPA database is as follows. First,
a crawler program was used to mine patent ownership transaction information, which contained
the patent application number, patent name, patent classification number, assignor and address,
assignee and address, patent application time, patent grant time, and patent transfer time. We obtained
115,784 patent transaction records from 2008 to 2015 in China. In this paper, we pay more attention to
the variations of city location before and after patent transfer. Secondly, the patent transfer data of the
three major urban agglomerations were screened out by extracting the city names before and after the
transfer. Thus, each patent transfer record contained an origin city and a destination city within the
three major urban agglomerations. Finally, we counted the number of intercity patent transactions
between city-pairs. Intercity technology transfer was defined as a city-pair that featured a patent
transfer occurring between different cities. We counted the occurrence of all city-pairs in a year from
January 1 to December 31 that denoted the strength of intercity linkages. Transfer data were used to
form an intercity technology transfer linkage by aggregating individual patent transfers at the city level.
The database includes three columns; namely, pre-transfer city, post-transfer city, and transfer times.
Note that we have only retained the patent transaction data within the three urban agglomerations,
without consideration of transactions across them. Instead, we emphasize the spatial characteristics of
technology transfer networks within urban agglomerations from a comparative perspective.

China has become a big patent country and the number of patents has ranked the first in the
world for six consecutive years. However, behind the amazing number of patents lies the quality crisis,
and the market value and competitiveness of a large number of patents are insufficient [43]—4.82%,
2.21%, and 3.95% are the average proportions of the number of patent transactions to the total
patents output of three major urban agglomerations (BTH, YRD, and PRD) for three years (2008, 2012,
and 2015), respectively. Figure 2 illustrates the number of total (intracity and intercity) and intercity
patent transactions of the three major urban agglomerations from 2008 to 2015. Patent right transaction
data are only a part of patent production, but represent high-quality innovative production [40,41].
There was a notable increment in the number of patent transactions within the three major urban
agglomerations during the study period. Moreover, according the patent right transaction information
in 2015, we identified several types of patentees in the assigner and assignee, including companies,
universities and research institutions, individuals, and others (Figure 3). Among them, companies
participated in many more patent transactions than other types of patentees. Meanwhile, companies
were more likely to play the role of the assignee than the assignor. However, individuals, universities,
and research institutions were the opposite.
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2.3. Methods

2.3.1. Network Construction

We modeled patent transfer activities within the urban agglomerations using a graph (G)
composed of a set (V) of n nodes and a set (E) of m links. In this study, we were not only interested in
the structure of the links, but also in the intensity of the links between cities, as they reflect the strength
of urban connections. On the basis of the principle of graph theory, a weighted urban network matrix
(Formula (1)) was established using a city as the node of the network. The patent transfer relationship
between the cities was represented by the edge, and the patent transfer quantity between the cities was
based on connection strength. The network covered the weight and direction of technology transfer
intensity. Rij was the number of patents transferred from i city to j city for node i. Nine matrices were
generated for the three major urban agglomerations in 2008, 2012, and 2015, respectively.

R =


0 R12 . . . R1(n−1) R1n

R21 R22 . . . R2(n−1) R2n
...

R(n−1)1
Rn1

...
R(n−1)2

Rn2

...
...

...
. . . R(n−1)(n−1) R(n−1)n
. . . Rn(n−1) 0

 (1)

2.3.2. Social Network Analysis

Social network analysis is a useful tool for investigating various kinds of networks [56,57]. It can
offer an overall picture and describe the details of a technology transfer network from the perspective
of patent transactions. Nine intercity technology transfer networks were constructed within the three
urban agglomerations based on the method outlined above. Gephi 0.9.1 (a social network analysis
software) was used to calculate network metrics. ArcGIS 10.3 was used to display the spatial pattern of
important metrics. The centrality of cities referred to their positional importance and the connections
among cities demonstrated their interaction with each other in the network [58]. Degree centrality and
betweenness centrality was calculated for all network nodes. Degree centrality was an early indicator
that reflected the importance of cities [59]. Betweenness centrality measured the extent to which one
city was accessible to other cities and controlled intercity connections with other cities within the
network [60]. Degree centrality for city i is defined as (2):

CD(i) =
∑n

i=1 x2 · j
n− 1

(j 6= i) (2)
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The degree centrality is the ratio of the number of cities connected to a city to the maximum
possible number of connections. A city had a higher degree centrality if it had more direct linkages
with other cities. Betweenness centrality for city i is defined as (3):

C′Bi =
∑j<k gjk(i)/gjk

(n− 1)(n− 2)/2
. (3)

Betweenness centrality is calculated as the ratio of the number of shortest paths between city j
and city k passing through city i to the number of shortest paths between city j and city k. The index is
normalized between 0 and 1.

The urban weight degree (e.g., the sum of weighted in-degree and out-degree) and net flow
in-degree (e.g., the difference between weighted in-degree and out-degree) were calculated to analyze
urban node characteristics.

2.3.3. Negative Binomial Regression Analysis

Intercity knowledge flow has significant heterogeneity and hierarchy [35–37]. So it is necessary
to explore the determinants of the strength of intercity patent transactions. Previous studies have
used a gravity model to analyze the determinants of innovation networks [14,61]. Because they do
not have directed intercity connections, their flow data cannot be split into origin and destination
regions. In this study, however, the number of directed intercity patent transactions was used as
the dependent variable. Because the dependent variable is a count, it is inappropriate to use an
ordinary least squares estimation. Poisson or negative binomial regressions can be used instead [62].
By calculating the mean and the variance of the dependent variable, we find the variance is greater
than the mean. Negative binomial regression is often more appropriate in cases of over-dispersion [63].
For the selection of explanatory variables, we relied on the existing empirical and theoretical literature
on this subject [28,30,64–66]. The explanatory variables are geographic distance, industrial structure
similarity, technology gap, and technology absorptive capacity. We also added three control variables
in the regression. Urban economies may affect the capacity for applying technology; thus, we consider
the urban economic gap as a control variable. The key city, as a technology output city, may affect
the volume of patent transactions between cities. The key city output is the second control variable.
Moreover, different urban agglomerations may have different disparities in the volume of intercity
patent transactions. The region is viewed as the third control variable in our model. Region is a dummy
variable to distinguish different urban agglomerations. The variance inflation factor (VIF) score is
below 10, the mean VIF is 1.54, and the highest VIF value is 2.00, indicating multi-collinearity is not
serious in these models. The industry data, R&D investment data, and GDP were obtained from
the China City Statistical Yearbook [67], and the patent grant data were obtained from the China
National Intellectual Property Administration. In this model, we use the cross-sectional data of 2015.
The definition of these variables is as follows.

Distance between city-pairs is measured as follows:

D =
dij

maxdij
, (4)

where dij is the physical distance between city i and city y. The maxdij is the farthest distance among
all city-pairs.

Industrial similarity is defined by the following:

rij =
∑K

k=1

[
(pi,k − pi)

(
pj,k − pj

)]
√

∑K
k=1(pi,k − pi)

2 ∑K
k=1

(
pj,k − pj

)2
(K = 1, 2, 3), (5)
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where pi,k is the proportion of the production of k industry in the productions of all industries of city i,
pi is the average of pi,k, and K is the industrial type.

Technology gap is measured by the gap in the number of patent grants between cities. Its formula
is shown as follows:

tij = ln
∣∣qi − qj

∣∣, (6)

where qi is the number of patent authorizations of a city. The number of patent grants of a city is
counted by CNIPA (http://www.cnipa.gov.cn/). It is the amount of patents granted to companies or
other units located in the city.

Absorptive capacity is calculated by the amount of research investment as a proportion of GDP of
the city absorbing the technology:

cj = Rj/GDP, (7)

where Rj is the amount of R&D investment in the destination city.
Economic gap is the gap of urban GDP with the formula below:

eij = 1− ln(mingdp/maxgdp), (8)

where the mingdp is the smaller value of GDP and the maxgdp is the bigger value of GDP.
Key city output is a dummy variable, kij = 1 when the city i is the key city (Beijing, Shanghai,

and Shenzhen) of urban agglomerations, and kij = 0 otherwise.

3. Results

3.1. Urban Centrality in the Technology Transfer Network

3.1.1. Degree Centrality and Betweenness Centrality

Table 1 lists the top five cities with the largest urban degree centrality (DC) and betweenness
centrality (BC) within the three major urban agglomerations in 2008, 2012, and 2015. Beijing, Shanghai,
Shenzhen, and Guangzhou all featured high degree centrality. These cities constituted the core of
intercity technology transfer networks. Beijing and Shanghai were observed to hold the dominant
position within their urban agglomerations. In 2015, the DC values for Beijing and Shanghai were
1, indicating that Beijing and Shanghai had established contact with other cities within the BTH and
YRD, respectively. In the PRD, Shenzhen and Guangzhou had the highest DC values during the
study period. These results indicated that the cities tended to connect to other cities that featured
developed economies and excellent innovation capacity. This suggests that the evolution of intercity
technology transfer networks was driven by the preferential attachment principle [68]. Furthermore,
DC values were observed to increase within the three major agglomerations during the study period.
However, this increase was observed to diminish during the 2012 and 2015 periods compared with the
2008 period.

Beijing, Shanghai, and Shenzhen were observed to dominate technology transmission in transfer
networks. These cities were important bridges for technology flows within the networks. However,
there was a considerable discrepancy among BC values within the urban agglomerations. For example,
the BC for Beijing–Tianjin–Hebei increased from 2008 to 2015, while the Yangtze River Delta and Pearl
River Delta experienced a downward trend. This suggests that the value of BC tended to decline for
cities at the top of the hierarchy. In other words, with the increase of intercity linkages, the dependence
of the cities at lower positions in the top hierarchy cities had decreased. However, a different situation
existed in BTH, where there was a single core network pattern. Most of the cities in this region had a
strong linkage with Beijing and a lesser connection with other cities.

http://www.cnipa.gov.cn/
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Table 1. Top five cities featuring the largest urban degree centrality and betweenness centrality within
three major urban agglomerations in 2008, 2012, and 2015.

Beijing–
Tianjin–Hebei

(BTH)

Degree Centrality Betweenness Centrality

2008 2012 2015 2008 2012 2015

Beijing 0.75 Beijing 0.92 Beijing 1.00 Beijing 0.43 Beijing 0.60 Beijing 0.66
Tianjin 0.33 Baoding 0.54 Tianjin 0.67 Tianjin 0.12 Tianjin 0.05 Tianjin 0.06

Baoding 0.17 Tianjin 0.46 Shijiazhuang 0.58 Tangshan 0.08 Shijiazhuang 0.03 Shijiazhuang 0.05
Langfang 0.17 Cangzhou 0.38 Langfang 0.42 Langfang 0.00 Baoding 0.02 Hengshui 0.04
Tangshan 0.17 Langfang 0.38 Xingtai 0.33 Qinghuangdao 0.00 Langfang 0.01 Langfang 0.04

Yangtze River
Delta (YRD)

Degree Centrality Betweenness Centrality

2008 2012 2015 2008 2012 2015

Shanghai 0.44 Shanghai 0.88 Shanghai 1 Shanghai 0.33 Shanghai 0.29 Shanghai 0.19
Hangzhou 0.32 Suzhou 0.64 Suzhou 0.88 Hefei 0.2 Suzhou 0.13 Nanjing 0.09

Hefei 0.32 Hangzhou 0.6 Ningbo 0.8 Nanjing 0.2 Hangzhou 0.09 Suzhou 0.07
Nanjing 0.28 Ningbo 0.56 Nanjing 0.8 Hangzhou 0.12 Nanjing 0.09 Hefei 0.07
Ningbo 0.24 Nanjing 0.56 Hangzhou 0.72 Wuhu 0.06 Ningbo 0.06 Hangzhou 0.05

Pearl River
Delta (PRD)

Degree Centrality Betweenness Centrality

2008 2012 2015 2008 2012 2015

Shenzhen 0.62 Guangzhou 0.92 Shenzhen 0.92 Shenzhen 0.31 Guangzhou 0.28 Shenzhen 0.26
Guangzhou 0.46 Shenzhen 0.85 Guangzhou 0.85 Foshan 0.19 Shenzhen 0.24 Guangzhou 0.14

Foshan 0.38 Foshan 0.77 Foshan 0.85 Guangzhou 0.15 Foshan 0.15 Foshan 0.11
Dongguan 0.31 Dongguan 0.46 Jiangmen 0.69 Dongguan 0.08 Dongguan 0.08 Jiangmen 0.02
Zhongshan 0.31 Zhongshan 0.38 Dongguan 0.54 Zhongshan 0.00 Zhongshan 0.01 Dongguan 0.02

As mentioned above, the centrality of cities refers to their positional importance. In this paper,
the centrality measures the technology transfer capacity of cities. Generally, the urban technology
transfer capacity is highly related to the economy, R&D, and innovation [69]. Thus, we made a
correlation analysis between these influencing variables (per capita GDP, R&D investment, patent grant)
and the urban centrality, as shown in Table A2 of Appendix A. There is a significant positive
correlation between the urban technology transfer capacity and economic level, R&D investment,
and innovation performance. Therefore, cities with a high centrality tend to have more developed
economies, larger R&D investment, and greater innovation performance than those with lower
centrality. Meanwhile, under the impetus of the preferential attachment mechanism, the cities with
high centrality occupy a more important position in the network.

3.1.2. Weighted Degree

All cities in the three major urban agglomerations were divided into four hierarchies according to
natural breaks classification using ArcGIS 10.3 (Figure 4). Moreover, these hierarchies were based on
urban degree (D) and weighted degree (WD).

Overall, both D and WD were observed to increase for the cities, and the intercity patent trading
became more positive over time. The scope of intercity technology transfer activities continuously
extended over time to match the whole urban agglomeration. Specifically, the YRD had the largest cap
value for WD, which was 972 in Shanghai. This was followed by the cap value in the PRD, which was
648 in Shenzhen. The BTH featured the smallest cap value, which was 313 in Beijing (Figure 4).
The YRD featured the most intercity linkages, suggesting a more perfect regional technology transfer
network. However, the BTH was exposed to an undeveloped technology transfer network during the
research period, where there was a significant polarization phenomenon in the spatial distribution.
Moreover, the spatial distribution of D and WD was significantly heterogeneous and hierarchical
within the three major urban agglomerations.

According to Figure 4, Beijing held the dominant position with the largest D and WD values in
the BTH. Tianjin also played an essential role as a sub-core city in the network. Additionally, most of
the other cities were located at a lower hierarchy in the network, except for Shijiazhuang and Langfang
in 2015. Overall, the cities in Hebei Province held peripheral positions within the networks. There was
a significant technology transfer gap between Hebei and Beijing/Tianjin. Shanghai was the core city
in the YRD, and dominated the technology transfer activities in the regional network from 2008 to
2015. Suzhou had the second largest WD values, replacing Hangzhou in 2015. Higher WD values were



Sustainability 2019, 11, 1647 10 of 24

gradually transferred from the central and southeastern areas to eastern areas throughout the study
period. In the PRD, the cities with larger D and WD values were concentrated in the southcentral
areas of the region. The WD value for Shenzhen (648) was far higher than that of Guangzhou (341),
despite the two cities being in the same urban degree hierarchy. This suggests that Shenzhen held
a more influential position in the network compared with Guangzhou. Interestingly, there was an
inconsistency between the urban hierarchy for D and WD. For example, Foshan had a higher D value
than Dongguan, whereas Foshan lagged far behind Dongguan in WD. Thus, a high D value does not
mean that a city will have strong intercity linkages. Some cities may have a fixed and strong technology
flow with a few cities.
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3.2. Flow Direction in the Technology Transfer Network

Net flow in-degree (NFD) was calculated for all cities within the three major urban agglomerations
to analyze the direction of intercity technology transfers. Table 2(a–c) list the NFD values for all cities
with the ranking based on WD within the three major urban agglomerations. Beijing, Shanghai,
and Shenzhen were observed to be the most important cities as they had the largest WD values within
their respective urban agglomerations.

Beijing was overwhelmingly dominant within the BTH, and the WD in the city was far higher
than that of other cities as a result of its political and economic advantages. The city was observed to
change from being a technology absorption center to an output center during the study period. Most of
the other surrounding cities were observed to have higher weighted in-degree values than weighted
out-degree values. This suggests that Beijing had a varied impact on the surrounding cities, ranging
from an initial siphon effect to a diffusion effect later in the study period. In the former period, Beijing
continuously absorbed technology from the surrounding cities owing to its numerous enterprises with
powerful transformation capability. This led to an economic gap between Beijing and the surrounding
cities and indirectly resulted in uneven economic development in the BTH. In the second period,
Beijing helped spread technology and innovation to the surrounding cities. Technology transfer was
an important means for promoting the integration of the Beijing–Tianjin–Hebei urban agglomeration
and relieving urban functions and population pressures in Beijing [20]. As a consequence, supporting
technological absorptive capacity and industrial cultivation in Hebei Province aided in reducing
poverty zones located around Beijing and Tianjin.

Table 2(b) demonstrates that Shanghai, Hangzhou, Suzhou, and Nanjing held dominant positions
within the network. Shanghai possessed a considerably more influential and central position within
the network compared with the other cities. These four cities were observed to change from technology
absorptive hubs to diffusion centers. The cities of Nantong, Jiaxing, Hefei, Huzhou, and Yancheng
were ranked as secondary in the network hierarchy and acted as technology absorbers in the YRD. It is
important to understand why cities at the top of the network hierarchy act as important technology
export centers, while second tier cities are normally the destination for technology transfers. First, this
is because developed cities such as Shanghai, Hangzhou, Suzhou, and Nanjing adopt development
strategies for the transformation to new high-tech industries. These cities pay more attention to research
and development industries with rich innovation resources, which results in more economic and social
benefits. Thereby, these developed cities generate strong external technology spillovers and become
technology export centers. Second, the fact that second tier cities act as the main absorption centers can
largely be explained by the technology gap theory. When there is a technical gap between two regions,
the less developed region will absorb and utilize the improved technology from the developed region.
The greater the technological gap, the more difficult for backward regions to imitate technologies,
which makes technology transfer more difficult. In other words, the technology spillover effect may
not occur when the technology gap exceeds certain distances. Therefore, second tier cities are more
likely to absorb technology from the cities at the top hierarchy of the network. Moreover, enterprises
play an important role in transforming scientific achievements into market-oriented products. Second
tier cities have more enterprises with excellent technical absorptive capacity than lower tier cities.
Thus, second tier cities are normally at the absorption center of the network. However, peripheral
cities in the network have smaller WD values because of the lower values for weighted in-degree
and weighted out-degree, meaning that technology transfer activities for these peripheral cities are
not positive.
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Table 2. Urban weighted degree (WD) and net flow in-degree (NFD) in the three major urban
agglomerations in 2008, 2012, and 2015.

(a) Beijing–Tianjin–Hebei

2008 2012 2015

City WD NFD City WD NFD City WD NFD

Beijing 69 31(50/19) Beijing 171 15(93/78) Beijing 313 −125(94/219)
Tianjin 62 −24(19/43) Tianjin 77 21(49/28) Tianjin 186 66(126/60)

Baoding 9 −5(2/7) Shijiazhuang 39 −5(17/22) Langfang 67 45(56/11)
Tangshan 7 5(6/1) Baoding 31 −13(9/22) Shijiazhuang 41 −7(17/24)
Langfang 6 −4(1/5) Langfang 27 −15(6/21) Tangshan 25 11(18/7)

Zhangjiakou 6 −6(0/6) Xingtai 24 −4(10/14) Cangzhou 19 −1(9/10)
Handan 3 3(3/0) Hengshui 20 2(11/9) Hengshui 14 −6(4/10)

Qinghuangdao 2 0(1/1) Qinghuangdao 19 1(10/9) Chengde 12 8(10/2)
Cangzhou 2 2(2/0) Tangshan 12 −8(2/10) Qinghuangdao 11 −7(2/9)

Shijiazhuang 1 −1(0/1) Zhangjiakou 12 2(7/5) Baoding 11 11(11/0)
Chengde 1 −1(0/1) Cangzhou 11 −1(5/6) Xingtai 9 5(7/2)
Xingtai 0 0(0/0) Chengde 4 4(0/4) Zhangjiakou 8 −2(3/5)

Hengshui 0 0(0/0) Handan 1 1(1/0) Handan 4 2(3/1)

(b) Yangtze River Delta

2008 2012 2015

City WD NFD City WD NFD City WD NFD

Shanghai 74 24(49/25) Shanghai 355 −129(113/242) Shanghai 972 −174(399/573)
Hangzhou 62 −12(25/37) Hangzhou 257 −143(57/200) Suzhou 647 −67(290/357)

Taizhou 43 −1(21/22) Suzhou 195 39(117/78) Hangzhou 469 −21(224/245)
Nanjing 35 1(18/17) Nanjing 164 10(87/77) Nantong 341 195(268/73)

Wuxi 34 −4(15/19) Shaoxing 133 71(102/31) Nanjing 331 −33(149/182)
Hefei 25 11(18/7) Wuxi 114 −20(47/67) Shaoxing 305 −147(79/226)

Ningbo 24 2(13/11) Changzhou 74 26(50/24) Ningbo 258 −48(105/153)
Wuhu 21 11(16/5) Ningbo 63 −15(24/39) Jiaxing 244 154(199/45)

Changzhou 19 −11(4/15) Jiaxing 63 −1(31/32) Changzhou 179 −29(75/104)
Suzhou 18 −12(3/15) Hefei 53 −29(12/41) Wuxi 176 −36(70/106)
Jiaxing 15 3(9/6) Taizhou 51 35(43/8) Jinhua 154 −78(38/116)

Zhenjiang 12 −12(0/12) Nantong 50 6(28/22) Huzhou 140 48(94/46)
Shaoxing 9 −1(4/5) Yancheng 49 39(44/5) Yancheng 100 74(87/13)
Nantong 4 2(3/1) Huzhou 48 40(44/4) Taizhou 95 59(77/18)
Taizhou 3 −3(0/3) Yangzhou 37 27(32/5) Hefei 87 53(70/17)
Tongling 3 3(3/0) Jinhua 36 4(20/16) Taizhou 71 −13(29/42)
Yancheng 2 0(1/1) Taizhou 33 11(22/11) Zhenjiang 62 −10(26/36)
Chuzhou 1 1(1/0) Wuhu 25 15(20/5) Yangzhou 61 33(47/14)

Xuancheng 1 −1(0/1) Anqing 19 19(19/0) Chuzhou 56 16(36/20)
Yangzhou 1 −1(0/1) Ma’anshan 17 −7(5/12) Wuhu 52 16(34/18)
Zhoushan 0 0(0/0) Zhenjiang 16 −2(7/9) Ma’anshan 27 5(16/11)
Chizhou 0 0(0/0) Chuzhou 11 11(11/0) Zhoushan 27 17(22/5)
Anqing 0 0(0/0) Tongling 10 −6(2/8) Xuancheng 19 −1(9/10)
Jinhua 0 0(0/0) Xuancheng 5 −1(2/3) Anqing 12 −6(3/9)

Huzhou 0 0(0/0) Zhoushan 0 0(0/0) Tongling 8 −8(0/8)
Ma’anshan 0 0(0/0) Chizhou 0 0(0/0) Chizhou 5 1(3/2)

(c) Pearl River Delta

2008 2012 2015

City WD NFD City WD NFD City WD NFD

Shenzhen 107 −3(52/55) Shenzhen 444 −210(117/327) Shenzhen 648 −262(193/455)
Dongguan 80 −10(35/45) Dongguan 344 154(249/95) Guangzhou 341 107(224/117)

Guangzhou 38 −14(12/26) Guangzhou 294 −70(112/182) Dongguan 252 70(161/91)
Foshan 32 4(18/14) Foshan 168 2(85/83) Foshan 250 12(131/119)

Zhongshan 26 12(19/7) Zhongshan 93 51(72/21) Huizhou 188 54(121/67)
Zhuhai 22 −14(4/18) Huizhou 77 55(66/11) Zhongshan 146 8(77/69)

Huizhou 22 16(19/3) Zhuhai 40 −14(13/27) Zhaoqing 128 −94(17/111)
Jiangmen 6 6(6/0) Qingyuan 22 18(20/2) Jiangmen 94 50(72/22)
Heyuan 3 3(3/0) Heyuan 21 9(15/6) Zhuhai 81 11(46/35)

Zhaoqing 1 −1(0/1) Jiangmen 17 5(11/6) Qingyuan 39 17(28/11)
Qingyuan 1 1(1/0) Zhaoqing 12 0(6/6) Shaoguan 31 13(22/9)
Shaoguan 0 0(0/0) Shaoguan 5 1(3/2) Heyuan 31 17(24/7)

Yunfu 0 0(0/0) Shanwei 2 −2(0/2) Shanwei 6 −6(0/6)
Shanwei 0 0(0/0) Yunfu 1 1(1/0) Yunfu 3 3(3/0)
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As shown in Table 2(c), Shenzhen and Guangzhou had the largest technology flows in the PRD
during the study period. This shows that Shenzhen’s technological innovation capability surpassed
the provincial capital of Guangzhou. The finding was similar to the study of economic links by Pan
et al. (2017), which discovered that Shenzhen was the most dominant city in the PRD [70]. The top
four cities with the largest technology flows during the study period were Shenzhen, Guangzhou,
Dongguan, and Foshan. Among these cities, Shenzhen was also the largest technology exporter. Most
of the other cities had a higher weighted in-degree than weighted out-degree, which indicated that
Shenzhen was the key technology exporter in the region. Shenzhen has been a window to the world in
China’s opening up, and its independent strength in innovation has been remarkable in recent years.
Indeed, technological innovation has become the driving force for economic development. In 2017,
Shenzhen’s economic output overtook that of Guangzhou for the first time. Guangzhou formerly
played the role of technology exporter, but has since changed into a major technology absorption
city. These changes suggest that Guangzhou has the capacity to absorb new technologies to improve
its competitiveness. For instance, the technology industry in Guangzhou pays close attention to the
new generation of information technologies, such as artificial intelligence, biomedicine, new energy,
and new material industries. Moreover, the city actively absorbs new technologies with high-tech
content. As a result, this has led to the rapid expansion of technology imports in the city.

It can be concluded that the top hierarchical cities within the urban agglomerations have paid
more attention to technology diffusion than technology absorption over time. This suggests that major
cities are acting as technology exporters, and that innovation has become an important function of the
megalopolis. Additionally, other cities within the urban agglomerations actively absorb technology to
improve productivity and competitiveness.

3.3. Flow Hierarchy in the Technology Transfer Network

Figure 5a–c display the evolution and structure of intercity technology transfer networks in the
BTH, YRD, and PRD during the study period. The technology transfer networks were visualized
in ArcGIS 10.3 by employing linkage data between the source and destination city. The width and
direction of the link represented the number of trades from origin to destination. The weighted
connections were divided into four grades using natural breaks classification. The chord diagram plot
is a useful instrument to investigate the bilateral flows by identifying the source, destination, direction,
and volume [71–73]. Thus, a chord diagram plot was used to visualize intercity technology transfer
flows with the help of the circlize package in R [74]. The chord diagram plots present the direction and
volume of the flows within the three major urban agglomerations from 2008 to 2015 (Figure 6, also see
in Table A3 of Appendix A).

Generally, the structural characteristics of technology transfer networks from a patent transaction
perspective featured some similarities. The technology transfer connections among cities continued to
grow over time, resulting in increased network density. This implies that the cities within the urban
agglomerations became more densely connected. Moreover, the strength of technology transfer
linkages increased during the study period. This is not surprising as the Chinese government
emphasized the importance of trans-regional technology transfers and issued policies to promote and
support technology flows in the marketplace.
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The spatial distribution of intercity technology flows was found to be unbalanced, which resulted
in the emergence of a hierarchy of linkages. An analysis of the spatial flow patterns revealed that
there was significant technology diffusion within the urban agglomerations. Technology diffusion was
mainly focused on neighborhood and hierarchy diffusion, with major cities as the source. For instance,
Shijiazhuang and Langfang emerged as third-tier cities in 2015 as a result of the effects of hierarchical
diffusion (jump diffusion) and contagious diffusion (neighboring diffusion). Similarly, neighboring
and hierarchical diffusions were also present in the YRD. Nanjing was observed to remain in the
secondary tier as a result of the effects of hierarchical diffusion, while its surrounding cities had lower
WD values. Conversely, Nantong was observed to climb the network hierarchy as a result of the
influence of neighboring diffusion. Neighboring diffusion was also apparent in the PRD, similar to the
geographical proximity effect. For example, Dongguan and Huizhou gained considerable technological
innovations from Shenzhen and had the largest weight values in 2015 (Figure 6). Furthermore,
there was a significant path-dependence effect due to the embeddedness found in the technology
transfer networks [75]. For instance, a lock-in effect was found in the intercity technology flows in
the BTH, which was mainly concentrated between Beijing and Tianjin, as well as in Langfang and
Shijiazhuang (Figure 6a). The strength of connections among the three fixed city-dyads (between
Beijing and the above-mentioned three cities) accounted for more than 50% of all connections during
the study period. The locking effect also existed in the YRD and PRD, as indicated by the sustainable
growth of the weight value for Shanghai–Suzhou and Shaoxing–Hangzhou from 2008 to 2015 (Figure 6b
and Table A3). The strength of connections between Shenzhen–Dongguan, Shenzhen–Guangzhou, and
Shenzhen–Huizhou also intensified over time in the PRD (Figure 6c). This indicated that the dynamic
evolution of technology transfer networks followed the retention mechanism of place dependence and
maintained notable spatiotemporal inertia. In other words, the connections among fixed city-dyads
maintained strong self-reinforcement. However, it is worth noting that the path breaking effect was also
significant in the YRD and PRD. This suggests that there was a variation mechanism that generated new
technology transfer paths in the intercity technology transfer networks. There was a sudden emergence
of city-dyads, such as Shanghai–Jiaxing, Nanjing–Nantong, Jinhua–Nantong, Shaoxing–Huzhou,
and Jinhua–Shaoxing in the YRD during the study period (Figure 6b). There were also new paths in the
PRD, such as in Guangzhou–Huizhou, Guangzhou–Jiangmen, and Foshan–Jiangmen. Additionally,
there were new linkages between peripheral and leading cities during the considered period (Figure 6c).
These links expanded to new growth frameworks in technology transfer networks and promoted
network connectivity.

In the BTH, Beijing possessed an overwhelming superiority within the network compared with
other cities (Figure 5a). Beijing was located at the center of the network in 2008 and was surrounded by
other cities, forming a star network. This network was continuously extended over time, and featured
an increase in the number of connections. The star network gradually evolved into a tree network
that was centralized in Beijing in 2015. The technology transfer network in the BTH maintained a
monocentric structure that was based on dynamic connections. The linkages between Beijing and
Tianjin were always at the top of the hierarchy for all linkages among other city-dyads. The two cities
had more technology-intensive enterprises with a greater capacity for technology transformation and
application. Thus, Beijing and Tianjin had the most active technology transfers in the region. However,
there was a large economic gap between Hebei Province and the two mega cities. It is theorized that
cities within the province may have had a lesser technology absorption from other cities because of
Hebei’s lack of industrial development. However, regions can promote technological demand by
upgrading urban industrial structures. Thus, there is a need for the cities within Hebei Province to
absorb technology to enable enterprise development. On the basis of these results, we can conclude
that technology transfer is a result of not only the technological gap between cities, but also the active
demand of enterprises.

Figure 5b displays the spatial patterns for intercity technology flows in the YRD. The technology
transfer network in the YRD evolved from a monocentric structure centered on Shanghai to a
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polycentric structure during the 2008–2015 period. In 2008, Shanghai was overwhelmingly dominant
compared with other cities. In 2015, Shanghai, Suzhou, Nanjing, and Ningbo were situated at the top
of the network hierarchy. The tree structure in the YRD demonstrated a complex net-like structure,
which indicated that most cities were positively joined to the technology transfer network. There may
have been technology transactions even among small cities in the YRD. Conversely, technology
transfers with small cities in the BTH were limited to Beijing. Furthermore, most intercity links were
mainly generated by the cities in the eastern part of the region. In contrast, there was less connectivity
and lower weight values for cities in the western part of the region. Most of the cities with the lowest
urban degree tiers were located in Anhui Province. This was expected as the cities in Anhui had a
weaker connection with other cities in the YRD.

The technology transfer network in the PRD was observed to evolve from a simple tree network to
a multi-star structure network centered on Shenzhen and Guangzhou, followed by Foshan (Figure 5c).
The linkages in the network increased and strengthened during the 2008–2015 period. Shenzhen
possessed the largest number of strength transfer links with other cities within the PRD. Dongguan,
rather than Guangzhou, had the largest number of links with Shenzhen during the study period.
This was unexpected as Guangzhou had an essential position in the PRD. However, this also explained
why Dongguan had a higher weighted degree than urban degree. The connection between Shenzhen
and Huizhou was upgraded to the top of the hierarchy in 2015. There are several possible explanations
for this phenomenon. One reason is that Shenzhen has become China’s innovation capital. The data
show that there are more than 30,000 high-tech enterprises in Shenzhen, forming a strong group of
ladder-type innovation enterprises. Moreover, 46 invention patents are produced daily on average.
The city has been praised by international media as China’s “Silicon Valley”. Another reason is that
the cities of Dongguan and Huizhou are located next to Shenzhen and are likely to be influenced by
the neighborhood diffusion of technology. Meanwhile, Shenzhen’s external technology transfer is
accompanied by an industrial transfer to neighboring cities. Neighboring cities such as Dongguan
and Huizhou were provided an opportunity for economic development. Industrial transfer has been
observed to occur in Shenzhen’s traditional manufacturing and high-tech industrial areas. Additionally,
improvements in transportation have enabled technology transfers from Shenzhen to Dongguan and
Huizhou. Foshan also occupies an important position in the network, and the city has a strong
connection to Guangzhou. Urban integration has also promoted technology transfer between these
two cities.

3.4. Potential Determinants of the Strength of Intercity Patent Transfer

Table 3 presents the results of the regression, in which the dependent variable is the number of
intercity patent transactions in 2015. Generally, the results confirmed that geographical distance and
technological gap matter for technology transfer in urban agglomerations. Moreover, the economic
gap and the key cities also affect the strength of intercity patent transfers.

First, we tested the effect of the control variables. In Model 1, the region variable coefficient is
non-significant, which shows that the effect of the region on technology transfer is not significant.
Thus, the data of three urban agglomerations can be analyzed together. In Model 2, the coefficients
of the economic gap and key city output are significant at the p < 0.001 level, with a negative effect,
which indicates the larger economic gap between cities is not beneficial to their technology transfer.
The key city output has a positive sign, which demonstrates that key cities are promoting external
technology flows. The coefficient of geographical distance is negative and significant at p < 0.001
in Models 3–6, further indicating that, owing to spatial proximity, intercity technology transfer
tends to diffuse to cities with close distances, confirming the neighborhood diffusion effect of
technology transfer within urban agglomerations [24,27]. The effect of industrial structure similarity
is non-significant in Models 5 and 6, which might be because competition will inhibit the transfer of
patents if the industrial structure between cities is very similar. It is also possible that the industrial
structure between cities is similar, providing learning opportunities, which promotes the transfer
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of patents. Thus, the effect of industrial similarity is non-significant. The indicator of a technology
gap is significant and positive in Models 3, 4, and 6, which means that an appropriate technology
gap may promote intercity technology transfer, a finding consistent with technology gap theory [66].
When we only add the key city output as the control variable, the coefficient of geographical distance
is non-significant. This indicates that the effect of the technology gap does not equate to “the bigger
the better”. If the technology gap between key cities and the destination cities is too large, technology
transfer may not occur. Generally speaking, the technological absorptive capacity of developed cities
is stronger than that of undeveloped cities. The coefficient of absorptive capacity is non-significant in
Models 3–6, which may be because cities with good absorptive capacity are more likely to accept new
and difficulty technology, while cities with weak absorptive capacity also need to introduce ordinary
technology to advance their development.

Table 3. Variable definitions and multiple regression results.

Dependent Variable: The Volume of City-Pair Patent Transactions in 2015

(1) (2) (3) (4) (5) (6)

Explanatory variables

Distance
−2.284 *** −1.915 *** −2.096 *** −1.784 ***

(−5.37) (−4.81) (−4.97) (−4.48)

Industrial similarity −1.331 * −2.705 *** 0.476 −0.835
(−2.28) (−4.06) (0.91) (−1.53)

Technology gap 0.191 ** 0.371 *** 0.0775 0.270 ***
(2.73) (5.37) (1.12) (4.00)

Absorptive capacity 0.0430 0.0182 0.0453 0.0232
(1.49) (0.76) (1.40) (0.77)

Control Variables

Region 0.314
(1.74)

Economic gap −0.467 *** −0.548 *** −0.608 ***
(−4.97) (−4.92) (−5.93)

Key city output 1.356 *** 1.048 *** 1.116 ***
(7.46) (5.63) (6.69)

cons 1.695 *** 2.898 *** 2.426 * 1.515 2.926 ** 1.968 *
(4.12) (12.86) (2.38) (1.77) (2.98) (2.46)

lnalpha_cons 0.331 *** 0.103 0.153 * 0.0308 0.0738 −0.0746
(3.98) (1.18) (2.09) (0.36) (1.03) (−0.81)

N 368 368 368 368 368 368

Note: t statistics in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Conclusions

Urban innovation networks have emerged as an important topic in economic and innovation
geography. In this paper, we explored intercity technology transfer networks from a patent
transaction perspective within three major urban agglomerations in China using intercity patent
right transaction data. We compared the construction method for existent undirected innovation
networks, and constructed a directed and weighted intercity innovation network. The network
surpassed previous limitations using market technology transactions. This paper also helped reveal
the evolution of urban innovation networks and the spatial patterns of urban agglomerations.
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The results revealed that Beijing, Shanghai, and Shenzhen were observed to hold the dominant
position in technology transfer networks within their three respective urban agglomerations. The three
cities were identified as having the strongest innovation capacity. The networks in the YRD and
PRD were discovered to be more integrated compared with networks in the BTH. This finding was
consistent with the inter-firm network concept by Pan et al. (2017) [61]. Moreover, the network position
of the city is related to its economy, R&D investment, and self-innovation. Shanghai had the highest
WD value, followed by Shenzhen and Beijing. The spatial distribution of D and WD was significantly
heterogeneous and hierarchical. Cities located at the top of the network hierarchy acted more as
technology diffusers than technology absorbers over time. The peripheral cities in the network mostly
acted as technology absorbers. This result suggests that innovation transfer has become an important
function of the megalopolis.

The technology transfer networks within the three urban agglomerations became more densely
connected and technology transfer linkages strengthened over time. There was a significant technology
diffusion effect, namely neighborhood and hierarchical diffusion. Moreover, there were also significant
path dependence and path breaking effects. This indicates that the dynamic evolution of technology
transfer networks followed the retention mechanism of path dependence and the variation mechanism
of new path development [10]. Meanwhile, the network also had strong expandability with the
emergence of new paths. An analysis of the spatial structure of urban agglomerations revealed that
the network in the BTH was a single-core network that transformed from a star network to a tree
network. The YRD featured a polycentric network that evolved from a single network centered on
Shanghai. The network in the PRD had evolved from a simple tree network to a multi-star structure
network centered on Shenzhen and Guangzhou, followed by Foshan. Furthermore, we explored the
determinants of intercity technology transfer, finding that geographical proximity and technology
gaps have a significant influence on the patent transaction volume of city-pairs.

Although this paper has generated some insights into urban innovation networks within urban
agglomerations, it should be noted that there are some limitations in the study. These questions deserve
our further investigation. First, is the absence of inter-agglomeration technology transfers. We only
considered intra-agglomeration technology connections. Therefore, future research should focus on
intercity technology transfers both within and among urban agglomerations. Second, aside from patent
right transactions, technology transfer can be detected by other ways such as license transactions,
strategic alliances, technology consulting services, and industry–university–research cooperation.
Additionally, patent citation and licensing could be taken into account. Third, on the basis of the limits
of cross-sectional data, a spatial panel regression analysis is appropriate for dynamic determinants of
intercity technology transfer.
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Appendix A

Table A1. Urban hierarchical system of three major urban agglomerations (BTH, YRD, and PRD;
pop: million).

Regions BTH YRD PRD

Municipality Beijing (Capital 13.63)
Tianjin (10.44) Shanghai (14.50)

Provincial capital Shijiazhuang (10.38) Nanjing (6.63)/Hangzhou
(7.36)/Hefei (7.30) Guangzhou (8.70)

Vice-provincial city Ningbo (5.91) Shenzhen (3.85)

Prefecture level city

Xingtai (7.88)
Baoding (1.207)
Hengshui (4.55)
Cangzhou (7.80)
Langfang (4.70)

Zhangjiakou (4.70)
Tangshan (7.60)
Handan (10.55)

Qinghuangdao (2.98)

Nantong (7.67)/Shaoxing (4.45)
Suzhou (6.78)/Yancheng (8.31)
Jiaxing (3.52)/Xuancheng (2.80)
Ma’anshan (2.29)/Huzhou (2.65)

Changzhou (3.75)/Wuxi (4.86)
Chuzhou (4.54)/Zhoushan (9.70)
Taizhou (6.00)/Yangzhou (4.62)
Tongling (1.71)/Anqing (5.29)
Zhenjiang (2.72)/Wuhu (3.88)

Jinhua (4.81)/Chizhou
(1.62)/Taizhou (5.08)

Dongguan (2.01)/Zhuhai (1.15)
Jiangmen (3.94)/Huizhou (3.64)

Qingyuan (4.32)/Yunfu (3.01)
Zhaoqing (4.44)/Heyuan (3.73)
Zhongshan (1.61)/Foshan (4.00)
Shaoguan (3.34)/Shanwei (3.62)

Table A2. Correlation analysis between centrality and influencing variables.

Pearson Correlation GDP Input Output

DC
0.796 ** 0.695 ** 0.815 **

Sig. (two-tailed) 0.000 0.000 0.000

BC
0.441 ** 0.863 ** 0.727 **

Sig. (two-tailed) 0.001 0.000 0.000

Notes: The three influencing variables are measured by per capita gross domestic product (GDP), research and
development (R&D) investment amount, and the number of patent grants. Source: China Urban Statistics Yearbook
and State Intellectual Property Office. ** Correlation is significant at the 0.01 level (two-tailed). DC—degree
centrality; BC—betweenness centrality.

Table A3. Top five pairs of intercity technology transfer connections in three major urban
agglomerations in 2008, 2012, and 2015.

Regions
Beijing–Tianjin–Hebei Yangtze River Delta Pearl River Delta

From To Weight From To Weight From To Weight

2008

Tianjin Beijing 42 Hangzhou Taizhou 19 Dongguan Shenzhen 41
Beijing Tianjin 11 Shanghai Ningbo 14 Shenzhen Dongguan 28

Baoding Tianjin 7 Zhenjiang Nanjing 14 Zhuhai Zhongshan 15
Zhangjiakou Tangshan 6 Suzhou Shanghai 12 Foshan Huizhou 9

Langfang Beijing 4 Xuancheng Wuhu 12 Guangzhou Dongguan 7

2012

Beijing Tianjin 38 Hangzhou Shaoxing 97 Shenzhen Dongguan 184
Tianjin Beijing 24 Shanghai Suzhou 52 Guangzhou Dongguan 62

Shijiazhuang Beijing 21 Shaoxing Hangzhou 30 Shenzhen Huizhou 53
Langfang Beijing 17 Wuxi Nanjing 29 Dongguan Shenzhen 44

Xingtai Beijing 14 Nanjing Shanghai 27 Guangzhou Shenzhen 39

2015

Beijing Tianjin 115 Shanghai Suzhou 166 Shenzhen Dongguan 128
Beijing Langfang 45 Suzhou Shanghai 148 Shenzhen Huizhou 108
Tianjin Beijing 41 Shaoxing Hangzhou 135 Zhaoqing Foshan 82
Beijing Tangshan 16 Shanghai Jiaxing 134 Shenzhen Zhongshan 64

Shijiazhuang Beijing 15 Hangzhou Jiaxing 46 Shenzhen Guangzhou 60
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