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A B S T R A C T

Rapid urbanisation has altered the vulnerability of urban areas to heat wave disasters. There is an urgent need to
identify the factors underlying the effect of heat waves on human health and the areas that are most vulnerable
to heat waves. In this study, we plan to integrate indices associated with heat wave vulnerability based on
meteorological observation data, remote sensing data and point of interest (POI) data; analyse the influence of
urbanisation on the urban vulnerability environment; and explore the relationship between the vulnerability
environment and heat-wave-related mortality. Finally, we attempt to map the spatial distribution of high heat-
wave-related mortality risk based on the results of heat wave vulnerability study and artificial society. The
results reveal that 1) there are differences in the influence of urbanisation on heat wave exposure, sensitivity and
adaptability; 2) the exposure and sensitivity level effects on the lower limit of health impacts and the adapt-
ability level effects on the upper limit of the health impact from heat wave in a given study area; and 3) areas
vulnerable to the effects of heat waves are not confined to the city centre, which implies that residents living in
suburban areas are also vulnerable to heat waves. Finally, this study not only explores the factors contributing to
the impacts of heat waves but also describes the spatial distribution of the risk of disaster-associated mortality,
thereby providing direct scientific guidance that can be used by cities to address heat wave disasters in the
future.

1. Introduction

Heat wave disasters, an extreme weather event result from climate
change impact, has seriously affected human society (Marsha et al.,
2018; Reid et al., 2009). Recent studies have confirmed that excessive
heat affects lung functions and blood flow in the human body and has a
direct impact on cardiovascular disease (Braga et al., 2002; Curriero
et al., 2002). Furthermore, many studies have demonstrated the re-
lationship between heat waves and population mortality (Anderson
et al., 2016; Chien et al., 2016). Specifically,> 7000 people died during
the 2003 European heat wave event (Della-Marta et al., 2007; Fouillet
et al., 2006), and>50,000 people died during the 2010 Russian heat
wave disaster (Hauser et al., 2016). In urban areas, the risk level is even
higher. Recently, the intensity, frequency and duration of extreme hot

weather events have increased in cities around the world (IPCC, 2007),
and this increase may lead to dramatic increases in heat-related mor-
tality and influence the development of the urban social environment.
For example, during the 2010 heat wave event in Xi'an, China, the ratio
of high-temperature mortality was 30% higher than that in other per-
iods (Huang et al., 2010).
Urban areas are recognisably more vulnerable to high temperatures

due to the “urban heat island” effect (Fallmann et al., 2016; Giannaros
et al., 2013). Heat wave impacts within urban areas, however, are de-
termined not only by disaster exposure but also by a city's sensitivity
and adaptive capacity according to the IPCC (IPCC, 2014). Specifically,
suburban areas with high sensitivity and a limited adaptive capacity are
especially vulnerable to heat waves. Therefore, the influence of urba-
nisation on urban vulnerability may be synthesised and classified
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(Alana et al., 2008). To be specific, the exposure level and sensitivity
factors increase along with the urbanisation process, although high
temperature adaptability is also enhanced, because of the increasing
social awareness and economic level of residents.
Few studies have examined the relationship between the three dif-

ferent change aspects of vulnerability to human health, although many
studies have examined vulnerability indices according to vulnerability
features. In terms of exposure, early studies primarily developed indices
based on air temperature observation data (Aubrecht and Ozceylan,
2013; Basu, 2009; Hajat et al., 2010). These data can be used to explain
the temperature change for long time series within a specific area. To
depict the temperature distribution pattern more precisely, recent re-
search has used satellite-derived estimates of land surface temperature
(LST) (Hondula et al., 2015), with the MOD11A1 LST being utilised in
most studies (Westermann et al., 2011; Zheng et al., 2014). Produced by
the MODIS Science Team, the MOD11A1 LST is a daily 1-km product.
However, exposure to high temperatures is characterised not only by
variable temperature but also by the duration and frequency of heat
waves (Mazdiyasni et al., 2017). Thus, the spatial distribution and
changes in temperature in time series should be considered in exposure
evaluations. In terms of sensitivity, the more sensitive groups are the
elderly and children (Cutter and Finch, 2008; Diaz et al., 2015) and
those who live below the poverty line (Reid et al., 2009) or in isolated
social conditions (Johnson et al., 2012). Other sensitivity indicators
include race, educational background and social status (Reid et al.,
2009; Semenza et al., 1996; Uejio et al., 2011). However, these in-
dicators are restricted by the statistical scale. Especially in China, the
unit area of this statistical data is too large to evaluate within a single
urban area. In terms of adaptability, past studies have evaluated various
adaptive indicators, such as the use of air conditioning, the condition of
the cooling infrastructure and the availability of medical resources
(Johnson et al., 2012; Westermann et al., 2011). At the city scale,
however, information about these indices is also limited for

quantification at a higher spatial resolution.
Recent studies have constructed large-scale simulation systems to

address complex problems based on the development of computer si-
mulation algorithms (Epstein, 2009), which provide a new quantitative
study method for complex social problems (Helbing, 2013; Wu and
Birkin, 2012), especially in the field of public health management.
Typical examples of this research include studies on how disease
spreads in an urban social network by modelling complex social be-
haviour (Epstein, 2009) and simulating the impact of public policies
(Wu and Birkin, 2012) or economic development (Jordan et al., 2012)
in complex processes. This method has often been used in epidemio-
logical research and is very suitable for studying urban environmental
problems; however, it has been minimally used for heat wave disaster
studies. On the other hand, with the rapid development of big data, new
spatial geographic data are used to represent social and economic ac-
tivities, such as using urban night-time light (NTL) and Google's point of
interest (POI) data to identify urban centres (Cai et al., 2017), re-
searching urban spatial expansion through check-in data from social
media (Zhen et al., 2017) and using electronic map data to identify
urban residents' activity areas (Puliafito et al., 2015). Therefore, these
new methods and data sources may be used to solve the index selection
problems and describe heat wave vulnerability in urban areas in a more
comprehensive and accurate manner.
Based on the present situation, this research aims to 1) quantita-

tively evaluate heat wave vulnerability indices through the use of multi-
type geospatial data, such as network POI data, road spatial data, NTL
data and remote sensing data; 2) depict the distribution characteristics
of each index by quantifying the influence of urbanisation on the urban
vulnerability environment and analyse which type of influence has an
obvious impact on human health under different heat wave conditions
using a logistic regression model; and 3) identify the specific distribu-
tion of high heat-wave-mortality risk based on the vulnerability en-
vironment and an artificial society to obtain the distribution of heat-

Fig. 1. Distribution area of Shanghai. (a) Spatial distribution of each district in Shanghai, including the various road types of roads in the city. According to the
analysis conducted in this article, roads are divided into two categories: driving roads (urban expressways and freeways) and walkable roads (national roads,
provincial roads, county roads and pedestrian roads in cities). (b) Annual mean temperature from 1960 to 2015. The straight white line depicts the linear regression
of the mean temperature data from different years.
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wave-related mortality risk in the study area. Ultimately, this study
proposes to answer the following key questions: 1) How does urbani-
sation influence the heat wave vulnerability in an urban area? 2)
Compared with different degrees of heat-related mortality, what factors
affect human health under the conditions presented by heat waves? 3)
How are high heat-related mortality risk areas distributed, and what are
the relationships between these areas and sensitive populations? The
responses to these questions will influence urban planning and advice
for the increasingly severe heat wave disasters in Shanghai.

2. Study area

Shanghai is the economic centre of China, with 24.20 million people
distributed across 6340.50 km2 of land (from Shanghai Statistics
Bureau, http://www.stats-sh.gov.cn/). Shanghai is the largest city on
the southeast coast of China, and it is located at the mouth of the
Yangtze River (Fig. 1a). In summer, the subtropical high-pressure zone
always leads to unbearably hot weather in this area. Apart from that,
the permanent population in Shanghai growing at a high speed since
the development of Pudong in 1990, it increased by 75.35% from 2000
to 2010 (Han et al., 2018). The spatial structure and natural environ-
ment within the city have experienced considerable changes, and
temperatures have increased as shown in Fig. 1b. At 14:00 on 21 July
2017, the temperature observed at Xujiahui station in Shanghai reached
40.9 °C, breaking the previous high temperature record and resulting in
severe impacts on the urban environment. These phenomena are the
primary motivation for our research.
Because natural conditions and social activity characteristics are

considered simultaneously in the study, we only included the tradi-
tional area of Shanghai (excluding Chongming Island) as the research
area, because Chongming is predominantly a natural environment and
the comprehensive evaluation factors are not suitable to describe this
area.
To unify the resolution of various evaluation data and facilitate a

unified analysis, the spatial distribution of a 500 * 500-metre grid that
included all districts in the study area was generated using the ArcGIS
fishnet tool as the statistical basis for this study.

3. Definition of heat wave

The concept of a heat wave refers to instances in which certain
stresses on natural and societal systems occur when the temperature
exceeds a certain threshold (Anderson and Bell, 2009). Generally, a
heat wave occurs when the temperature exceeds a certain threshold on
a given number of consecutive days (Tan et al., 2007). Therefore, a
complete definition of a heat wave involves two main variables: 1) a
high temperature threshold and 2) the number of consecutive days over
which the temperature exceeds the threshold. The two values will vary
for different locations depending on the varying influences of tem-
perature (Keellings and Waylen, 2014). Based on the above two vari-
ables, the definition of a heat wave used in this study is as follows: (1)
Temperature threshold: This study defines a heat wave event as the
Tmax (highest temperature) and Tmin (lowest temperature) for a given
day that are> 90% of the values for other days of the year. Combining
the Tmax and Tmin to define the heat wave events aims to eliminate the
phenomenon of cooling that occurs at night. (2) Number of continuous
days: If the interval between heat wave events is less than three days,
then the events are considered one single event; otherwise, the events
are considered multiple, independent events. This method considers the
influence of the overlap between epidemiological events, and it is also
consistent with results that there is a weak link between heat-wave-
related deaths measured every day and those measured every three
days (Curriero et al., 2002).
Fig. 2 shows the process of defining the heat wave events used in

this study. Although the highest temperature exceeded the threshold on
both 27 and 28 August, the lowest temperature did not exceed the

threshold on those days; therefore, those days were not included in the
heat wave event. In E2, from 15 to 18 August, the requirement of ex-
ceeding both the Tmax and Tmin threshold was not met. While, based on
the standard of judging independent events for 3 days, this heat wave
was regarded as a single event occurring from 13 to 20 August.

4. Data and methodology

4.1. Data sources for HVI

To estimate the risk of heat-related health impacts, many studies
have developed heat vulnerability indices (HVIs) using a combination
of exposure, sensitivity and adaptability indices based on a vulner-
ability definition (IPCC, 2014). Exposure can be understood as the
proximity of people or systems to disasters (Fussel, 2007; Kelly and
Change, 2000; Turner et al., 2012). Sensitivity is characterised by the
maximum impact from a disaster that a system can bear (Díaz et al.,
2018; Fussel, 2007). Different system areas are able to tolerate different
maximum impacts from heat wave disasters due to their varying qua-
lities (Curriero et al., 2002). Adaptability refers to the ability of a
system or person to change their own state and behaviour in an effort to
better adapt to existing or expected pressure from a disaster (Cutter and
Finch, 2008).
Accordingly, we have selected seven variables that are relevant to

the three HVI components.

4.1.1. Spatial variables for heat wave exposure
The degree of exposure will differ depending on the physical attri-

butes of the disaster event (Ho et al., 2017). In this study, we attempt to
examine the changes in physical attributes of a heat wave as exposure
factors. According to relevant studies, three physical variables are se-
lected across the study area:

(1) Heat wave duration (HWD) refers to the number of days corre-
sponding to the longest heat wave event during the study year.
According to Mazdiyasni, the number of deaths associated with
heat waves is related to the duration of the longest heat wave
during a given year (Mazdiyasni et al., 2017).

(2) Heat wave frequency (HWF) describes the number of heat wave
events occurring in a given year. Previous case studies (Aubrecht
and Ozceylan, 2013; Mazdiyasni et al., 2017) demonstrate that the
number of deaths associated with heat waves is related to the HWF
throughout an entire year.

(3) Heat wave intensity (HWI) is expressed as the temperature required
to ensure higher exposure with a higher temperature level during a
heat wave event. Human activities typically result in built-up en-
vironments containing many types of impervious surfaces char-
acterised by a subsequently higher thermal environment distinction
inside the city (Johnson et al., 2012). Temperatures in the city
centre are significantly higher than those in the surrounding sub-
urbs. Consequently, the impact of temperature on the human body
is more prominent in the city centre than it is in the suburbs.

HWD and HWF are obtained from meteorological observation data.
First, daily distribution rasters of Tmax and Tmin are depicted using the
interpolated method of universal kriging based on meteorological data
(Hudson and Wackernagel, 2010). Second, the dates for each day's Tmax
and Tmin were converted into polygon data using ArcPy (batch calcu-
lation API of ArcGIS). Third, these polygon dates were matched to the
same 500-metre grid such that each grid ID would contain the values of
Tmax and Tmin for each day at the same time. Then, grid-based “HWD”
and “HWF” maps were derived from the heat wave definition, using the
batch calculation packages of NumPy and Pandas in Python.
HWI is described using LST. Based on Landsat 8 images, the spatial

distribution of the LST is calculated using the LST inversion algorithm
(Coll et al., 2010). The acquisition time of Landsat 8 data is 3 August
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2015, when the heat wave incident was observed at all 8 sites across the
study area. The Landsat 8 data used in this study were provided by the
Geospatial Data Cloud site (http://www.gscloud.cn).

4.1.2. Spatial variables for heat wave sensitivity
Many different indices can be used to express environmental sen-

sitivity within an urban area, and these indices often include many
aspects of the urban environment (Chuang and Gober, 2015; Ho et al.,
2017; Krstic et al., 2017). We included two indices that have in-
dependent relationship with heat wave sensitivity:

(1) Density of roads. In densely populated areas, intensive traffic is an
important source of anthropogenic heat emissions (Chow et al.,
2014). Areas with highly dense road networks may be more sensi-
tive due to the combination of vehicle exhaust emissions and high
air temperatures (Sun et al., 2018). These factors have been used to
develop an important vulnerability index in related studies (Krstic
et al., 2017). In the present study, the road networks with higher
traffic volume, including urban expressways, highways, viaducts
and national roads, were obtained using OpenStreetMap (OSM,
www.openstreetmap.org), We calculated the length of the selected
roads in each 500-m grid section.

(2) Vegetation coverage. High vegetation coverage may regulate the
high temperatures through heat absorption; therefore, high vege-
tation coverage is often associated with a reduction in heat-related
mortality. In fact, a study comparing two heat waves in Shanghai in
1998 and 2003 showed that the primary cause of a decrease in
mortality was an increase in vegetation coverage at the urban level
(Huang et al., 2010). To describe the level of vegetation coverage
within the study area, we attempt to represent the vegetation
coverage using Li’s inversion algorithm based on Landsat 8 data (Li
et al., 2014).

4.1.3. Spatial variables for heat wave adaptability
Many different indices can be used to express the adaptability level

of people and systems when a heat wave event occurs. We included two
indices from relevant research for people and systems.

(1) Availability of medical resources. As important social resources for
combating disease, comprehensive hospitals and community health
institutes play a key role in maintaining residents' health (Cutter
and Finch, 2008). To describe the availability of medical resources
in the study area, the specific distribution of all medical sites in
Shanghai was obtained using the GAODE map's application pro-
gramming interface (API). Many studies have used these API data to
describe social resources in large cities (Liu et al., 2017; Zheng
et al., 2018). The data used in this study were acquired in December
2015. Several medical resources that are relevant to the treatment
and prevention of heat-related diseases were selected (including
general hospitals, community health centres, clinics and hospitals
for the treatment of infectious diseases). In addition, we obtained
the spatial distribution of walkable roads in Shanghai using OSM
(Fig. 1) to quantify the service scope of these units. Based on the
relevant research, the normal walking speed in these walkable areas
was assumed to be 4.5 km/h (Andriacchi et al., 1977). The spaces
without a distribution of walkable roads were considered to be
buildings or other surfaces, in which the normal walking speed was
assumed to be 4 km/h. The cost of walking time to the nearest
medical sites, which was calculated using the cumulative cost dis-
tance tool in ArcGIS, was used to express the availability of medical
resources in the study area.

(2) Night-time light (NTL) value. There is a strong association between
the socio-economic conditions and the incidence of heat-related
diseases in urban areas (Reid et al., 2009). Many studies have at-
tempted to describe the socio-economic conditions using NTL data
(Zhang and Seto, 2011) to explain the positive correlation between
NTL and the socio-economic conditions in urban areas (Cai et al.,
2017). In this study, the annual composites of NTL data from the
Visible Infrared Imaging Radiometer Suite (VIIRS) throughout the
study years (2015) were collected from the National Centers for
Environmental Informational (https://www.ngdc.noaa.gov). The
annual composited data are based on day/night band (DNB) data
that are filtered to exclude information impacted by stray light,
lightning, lunar illumination and cloud cover according to the data
description (https://www.ngdc.noaa.gov/eog/viirs/download_dnb_
composites.html). To verify the representation of this data, we

Fig. 2. Observation data from the Minhang Meteorological Observatory for August 2015. All meteorological data used in this paper were obtained from the China
Meteorological Data Network (http://data.cma.cn).
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calculated the average intensity of the NTL values in each district
and performed a linear regression analysis between the NTL values
and the per capita GDP for each district in 2015. The results, which
had an R2 of 0.75 and p < 0.0001, revealed that the NTL data
adequately represent the social and economic spatial distribution
within the city.

4.2. Analysis methods for HVI

4.2.1. Factor analysis method for HVI
Many studies have correlated urban areas with high temperatures,

where dense populations are at risk and social vulnerabilities are spa-
tially variable (Madrigano et al., 2015a; Reid et al., 2009). It is neces-
sary to classify the urban environment by combining various vulner-
ability factors to explore the impact of an urban-integrated vulnerable
environment on human health.
However, different aspects of urbanisation have a varying influence

on urban vulnerability. On the one hand, the level of exposure and
sensitivity factors may have increased as the human activity intensity
increased during the process of urbanisation. On the other hand, the
level of high temperature adaptability may simultaneously be enhanced
because of increases in the social and economic levels. In other words, it
is possible to separate the integrated vulnerable environment from the
influence of urbanisation.
For the integrated approach, unscientific descriptions may be gen-

erated when the indices are simply added. Therefore, we chose to
classify the vulnerability environment according to the spatial char-
acteristics of the urban environment.
To find more independent aggregated patterns, the varimax rotation

method is applied to these selected HVI indices (Wood et al., 1996). The
varimax rotation can further simplify the spatial patterns via simila-
rities and maximise the spatial patterns based on their differences.
Many studies have used this method to guide the study of vulnerability
environments (Chuang and Gober, 2015; Reid et al., 2009). In those
studies, each spatial index is assigned a weighted score from the var-
imax rotation result, and the sum of the weighted indices are ag-
gregated to describe a type of vulnerability environment.

4.2.2. Health impact analysis of HVI
Different types of vulnerability environments can impact health to

varying degrees (Reid et al., 2009). To understand how accurately the
vulnerability environment reflects actual mortality at the local level, we
evaluated the locations and types of urban environments that are at risk
of heat-related mortality caused by different types of vulnerability en-
vironments beyond social and natural contexts using a multinomial
logistic regression model (MLR), which included factor scores from the
vulnerability classification as independent variables and daily mortality
for heat wave days as a three-category dependent variable (zero,
moderate and high mortality). P-values and odds ratios (ORs) (95%
confidence interval (CI)) were presented for each category, comparing
net moderate and high against zero mortality net.
Daily mortality data for the entire year of 2015 were collected from

the Pudong Centre for Disease Control. The following information was
available for each death: date of death; education level; age; sex; ad-
dresses; and cause of death (coded based on the 10th revision of the
International Classification of Diseases). A total of 21,858 non-acci-
dental deaths occurred in 2015. To focus on heat-related mortality, we
identified 1456 residents who died during the heat wave period ac-
cording to the definition of heat wave in this study, and the risk ratio
(RR) was 1.32 > 1, which explains the contributing impact of high
temperatures to these deaths. Then, these deaths were geocoded (in-
cluding longitude and latitude) using the address interpretation tool of
the GAODE map based on the residents' addresses in the database.
We selected Pudong as a research object for the analysis for two

reasons. First, the area of Pudong is 1210.41 km2, which is more than
one-quarter of the total area of Shanghai. The differences in the socio-

economic and natural conditions in Pudong are evident. The urbani-
sation level in the north is higher, and it includes Shanghai's financial
centre, Lujiazui Street. In the south, the urbanisation level normalises
and is characterised in part by an agricultural economy. Second, the
level depends on the sea, and the temperature conditions in the region
are unstable and easily affected by heat waves in summer.

4.2.3. Method of mapping the mortality risk distribution
The final step was to map the spatial distribution of the high mor-

tality risk areas by comparing the distribution of high heat-wave-re-
lated mortality risk and specific sensitive populations.

(1) Distribution of high heat-wave-related mortality risk

Based on the identification of mortality-related vulnerability en-
vironments that are significantly associated with actual high mortality
risk, we selected the regions characterised by higher values in all types
of mortality-related vulnerability environments as high heat-wave-re-
lated mortality risk areas in the study area.

(2) Application of artificial societies

We used a model artificial society to simulate the spatial distribu-
tion of all sensitive populations. This simulation satisfied the following
requirements: 1) the data feature of artificial societies is consistent with
the characteristics of real populations and 2) the relationships of the
artificial society are consistent with the relationships of real society.
Shanghai census data from 2010 served as the data source for this

simulation. Because large-scale censuses are only conducted once per
decade in China, an accurate representation of China's current popu-
lation distribution was obtained for the next decade.
The artificial society is constructed based on three key algorithms.

(1) Family structure generation algorithm: In reconstructing a reason-
able family structure, this article only considers family structures
involving three or fewer generations because according to the
China Statistics Bureau 2011 (Sumita, 2011), the three-generation
family structure accounted for> 90% of the total households in
China. Fig. s1 shows the process of family structure modelling based
on family size.

(2) Population attribute matching: The corresponding population at-
tribute values, including sex and age, can be assigned to individuals
according to their family role. The assignment process is shown in
Fig. 3b. In this process, we included three adjustable variables in
the model (AHW, the age difference between husband and wife;
AFC, the age difference between the mother and the eldest son; and
ACC, the age difference between brothers and sisters). By adjusting
for these three variables, the simulation results are consistent with
real census data.

(3) Spatial mapping of the artificial society: As the final step, we at-
tempt to provide the spatial extent regarding where the sensitive
populations are located along every street. This part of the algo-
rithm is divided into three steps according to the process order: 1)
Built-up areas along each street were extracted using supervised
classification based on Landsat 8 data, with an image acquisition
time of 28 August 2013, which is the most recent data relevant to
the 2010 census with high visibility and minimal atmospheric in-
terference; 2) Family populations for each street were distributed in
the built-up areas via a spatial calculation; and 3) The spatial dis-
tribution of sensitive populations (people under ten and over sixty
years old) along each street were selected by family scale.
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5. Results

5.1. Spatial variation patterns of HVI components

In general, the inconsistent numerical differences among each HVI
component are shown in Table 1, and the different patterns of each
index are evident as shown in Fig. 3. Higher vulnerability was re-
presented by higher evaluation scores. Significant differences were
observed between each index; thus, these indices can describe the
complexities of the urban system from different aspects.
Specifically, two trends were observed for every index in the spatial

distribution.

a) Spatial trend from the coast to inland area. The special atmospheric
environment from coastal to inland areas varies according to the
influence of sea surface temperature; therefore, the coastal area's
thermal environment is consistently higher in summer. Thus, HWD
and HWF vary between coastal and inland areas (in coastal areas,

the value of HWD is higher but the value of HWF is lower compared
with that of inland areas). This result is consistent with Oliver et al.'s
research (Oliver et al., 2017).

b) Spatial trends from the downtown area to the suburbs. Social and
economic activities are concentrated in downtown areas, which
represents an influence of urbanisation. Moreover, the effects of this
phenomenon present two different aspects. First, concentrated
human activity results in lower vegetation coverage, higher road
density and higher level of HWI in downtown areas. Consequently,
the value of these indices is higher in downtown areas. Second,
under intense social economic activity, the availability of social
resources is higher and socio-economic conditions are better in city
centres than in suburban areas. As a result, the heat wave adapt-
ability of downtown areas is better than that of suburban areas,
which is represented in the patterns of NTL value (Fig. 3f) and
medical resource availability (Fig. 3g).

In general, these indices could be integrated for these similar spatial

Fig. 3. (a) Spatial distribution of the HWD value; (b) spatial distribution of the HWF value; (c) spatial distribution of the HWI value; (d) spatial pattern of the density
of roads; (e) spatial distribution of the vegetation coverage; (f) spatial pattern of the night-time light value; (g) spatial pattern of the availability of medical resources.
The means of each indicator value are the same as in Table 1. All results were processed using the same grid size (500m×500m) after standardisation.

Table 1
Summary of assessment factor statistics for urban and suburban data (these data were collected separately) after data normalisation from 0 to 1. Because higher
vulnerability is represented by higher evaluation scores, the mean values of each index are not the same: 1) higher values of HWD, HWF, HWI and Density of Roads
represent longer duration, higher frequency, higher LST and higher road density, respectively. 2) higher values of Vegetation Coverage, Availability of Medical
Resources and NTL represent lower coverage rate, lower availability and lower NTL values, respectively. Lower adaptability implies higher heat wave vulnerability.

Characteristic Total City centre Suburbs

(22,116 grids) (1162 grids) (20,954 grids)

Mean (SD) HWD 0.4224 (0.3031) 0.2001 (0.0890) 0.2001 (0.0890)
Mean (SD) HWF 0.4152 (0.2310) 0.5436 (0.1129) 0.4080 (0.2338)
Mean (SD) HWI 0.4164 (0.1371) 0.5426 (0.0817) 0.4094 (0.1362)
Mean (SD) density of roads 0.1104 (0.0893) 0.2273 (0.1451) 0.1039 (0.0803)
Mean (SD) vegetation coverage 0.6034 (0.1731) 0.7913 (0.0864) 0.5929 (0.0965)
Mean (SD) availability of medical resources 0.1505 (0.1173) 0.0560 (0.0412) 0.1557 (0.11179)
Mean (SD) NTL 0.6914 (0.1007) 0.5535 (0.0720) 0.7991 (0.0978)
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trends to comprehensively describe an urban environment. If all index
types are integrated by using weighted sums, the method of weight
definition would affect the study results and the recommendations.
Therefore, we elected to integrate methods based on spatial trends from
these indices.

5.2. Factor analysis

To explore the relationship between urban vulnerability environ-
ments and human health under heat wave conditions, we used the
varimax rotation based on related research (Chuang and Gober, 2015)
to comprehensively characterise the urban environment based on the
spatial characteristics of each index.
As shown in Table 2, these indices are classified as two integrated

components in an attempt to describe urban vulnerability environment
factors. Moreover, according to the weight score for each index, we
categorised these factors as follows: Exposure and Sensitivity (E&S) and
Lacking Adaptation (LAD). Then, the spatial pattern of each factor was
obtained by totalling all indices after multiplying by each weight. The
spatial results are shown in Fig. 4. The numerical results show that E&S
and LAD explained 30.79% and 35.57% of the variance, respectively.
Together, they explained 66.36% of the overall variance.
Areas with higher values for E&S are considered to be areas with

high disaster exposure or susceptibility to high temperature. As shown
in Fig. 4, the E&S map has a regular distribution of values, with high

values primarily distributed in the downtown and coastal areas in the
east. Areas with higher values for LAD are considered to be areas with
low socio-economic capacity or poor socio-economic resources. In
particular, the socio-economic level in the northern part of Shanghai is
evidently higher than that in other areas. Because downtown area is
distributed in the north, and the values for LAD in the southern suburbs
(especially the southeast coastal area), where the source of social and
economic resources are limited, are the highest.
In general, the study area is divided into two factor types as shown

in Fig. 4. In brief, high E&S values represent those areas characterised
by high exposure and sensitivity but strong adaptability to heat waves,
whereas high LAD values signify areas with low exposure and sensi-
tivity but weak adaptability to heat waves. The downtown area is
characterised by high E&S values and low LAD values because despite
the concentration of human activities contributing to high urban tem-
peratures, heat wave disaster adaptability is also enhanced by the im-
provement in socio-economic conditions. With regards to the health of
urban residents, it is important to determine which factor is the
dominant vulnerability factor for actual mortality.

5.3. Health impact analysis results

Of the 5702 grids in the Pudong area with corresponding factor
values, there are 654 grids in which the number of deaths occurred in
the context of a heat wave disaster. These grids are divided into two
categories according to the median number of heat-wave mortalities.
The results of comparing the net moderate and high mortality against
the zeromortality net by using the MLR model are shown in Table 3.
The results reveal that the E&S factor is a significant predictor of the

net moderate heat-wave-related mortality ratio (p < 0.05)
[OR=1.210; 95% CI: 1.134, and 1.428 for a 1-unit increase in the E&S
factor score]. The OR value for the net high heat-wave-related mortality
ratio is lower than that of the net moderate heat-wave-related mortality
ratio. The LAD factor is a better predictor of the net with high heat-
wave-related mortality ratio (p < 0.05) [OR=1.548; 95% CI: 1.209,
and 1.626 for a 1-unit increase in the LAD factor score]. However, the
predictive value of the LAD factor for the net moderate heat-wave-re-
lated mortality ratio is lower (OR=1.003). The results show that the
impact of the E&S factor on residents' health does not increase with an

Table 2
Results of the factor analysis based on varimax rotation.

Characteristic Factor 1 Factor 2

Exposure and
sensitivity (E&S)

Lacking adaptation
(LAD)

HWD 0.280 −0.017
HWF 0.153 −0.532
HWI 0.563 −0.321
Density of roads 0.55 −0.069
Vegetation coverage 0.575 0.002
Availability of medical

resources
−0.319 0.432

NTL −0.84 0.545

Fig. 4. Spatial pattern of the E&S factor (a) and LAD factor (b); higher vulnerability is represented by higher evaluation scores for both the E&S factor and LAD factor.
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increase in mortality. In other words, when the E&S factor value ex-
ceeds a certain threshold, the impact on the residents' health will not
increase. In contrast, when the social resources in the surrounding areas
are limited and the social connections are relatively weak, the impact of
heat waves on the residents' health will be more profound.
In summary, the level of E&S effects on the lower limit of heat wave

health impact and the LAD level effects on the upper limit of the heat
wave impact on human health in the study area. Moreover, the E&S and
LAD both influence the impact of heat waves on human health.

5.4. Mapping heat-wave-related mortality risk

The last part of the study maps the heat-wave-related mortality risk
within the study area. First, we determined the heat-wave-related
mortality risk area based on the values from two conditions: 1) greater
than average E&S and LAD factors; or 2)> 95% values for E&S or LAD
factors (because E&S and LAD are both mortality-related factors based
on the results from the health impact analysis). Second, the number of
sensitive populations, including individuals who are older than 60
or< 10 years old, is identified in the study area based on an artificial
society as shown in Fig. s2. Moreover, we calculated the total number of
sensitive populations in each district to verify the accuracy of the data
and compared this number with the value from actual census data.
Comparison of the results reveals that the two sets of data are equiva-
lent. Finally, to combine the heat-wave-related mortality risk area with
the sensitive populations, we extracted the spatial distribution of all
grids with high mortality risk and identified the number of sensitive
residents in these grids.
A heat-wave-related mortality risk distribution map was developed

as shown in Fig. 5. Two trends are shown in this map: 1) The number of
grids in suburban areas is significantly higher than in the city centre,
indicating that heat wave vulnerability is higher in the suburbs than in
the city centre, which is consistent with the results reported in relevant
studies (Chen et al., 2016); and 2) Although the number of high-vul-
nerability risk grids in the city centre is small, the large size of the
sensitive population indicates the importance of considering these areas
when planning medical resources to manage heat wave disasters in the
future.

6. Discussion

In this study, we comprehensively describe heat wave vulnerability
environments using multi-source geographic data and evaluate how
accurately these vulnerability environments reflect actual mortality at
urban area. Comprehensive vulnerability environments can be divided
into two opposing types using varimax rotation. Generally, the devel-
opment of these two opposing trends is a result of urbanisation, wherein
many residents migrate to downtown areas. Concentrated populations
lead to increased anthropologic heat, which alters the heat wave ex-
posure and sensitivity patterns. At the same time, urbanisation also
promotes the social economy of downtown areas, which can enhance
heat wave adaptability in these areas. These opposing trends are
therefore represented in the same area as shown in Fig. 4a and b.

Furthermore, we try to use the MLR model to evaluate the location
and type of urban environment that is at risk of heat-related mortality
caused by one of these two vulnerability environments. The results
showed that, in the study area, the E&S factor impacts the lower limit of
the heat wave's effect on resident health and the LAD factor impacts the
upper limit of the heat wave's effect on human health. In addition, the
impacts of the E&S and LAD factors on human health will likely change
in the future as a result of urbanisation. Specifically, the LAD factor will
have more profound and lasting impacts because of the distinct LAD
factor effects on the net with high heat-wave-related mortality ratio.
The effects of E&S factor, however, will be gradually weaken because
the effects on resident health do not increase when the E&S factor value
exceeds a certain threshold.
Finally, this study maps heat-wave-related mortality risk based on a

combination of research on vulnerability environments and artificial
societies. The map reveals that the sensitive populations distributed in
suburban area, especially those in suburbs that are near the downtown
area and coast, experience high heat-wave-related mortality risk. On
the one hand, suburbs close to the downtown include larger-sized
sensitive populations, yet with generally lower social and economic
conditions. On the other hand, suburbs near coastal experience a higher
level of high-temperature exposure and present relatively lower social
economic condition. In other suburbs, the risk levels varied depending
on the influence of different socio-economic conditions and tempera-
ture conditions. Compared with the suburbs, few high-risk grids are
observed within the city centre despite this area accumulating a large
number of sensitive populations. In summary, it is important to con-
sider these two types of areas when planning socioeconomic resources
responses to heat wave disaster.
In the near future, young people will relocate to city centres with

the expansion of urbanisation. More importantly, a high proportion of
the ageing and early childhood populations will become “empty nests”
in the suburbs (Chen et al., 2016). The social isolation of these empty
nest populations is more severe when coupled with the limited avail-
ability of social and economic resources in suburban areas, which will
increase the overall level of high-temperature vulnerability of future
suburban populations. The results presented in this study reveal that
adaptability has a clear effect on the risk of heat-wave-associated
mortality. Therefore, the allocation of social resources and sensitive
populations must be considered in an effort to address climate change
in suburban areas.
The innovations of this study are reflected in the following two

aspects.

a) The index assessment method. Both satellite data and meteor-
ological observation data were used to evaluate the heat wave ex-
posure pattern. Additionally, NTL and POI data were used to eval-
uate socio-economic activities. Lastly, the distribution of sensitive
populations within the city was depicted using artificial societies. To
the best of our knowledge, this is the first vulnerability assessment
within an urban interior that has overcome statistical scale limita-
tions.

b) The map of heat-wave-related mortality risk in Shanghai provides
direct evidence for several findings. 1) Due to a strong adaptability
to heat waves, the areas with high heat wave vulnerability in the
downtown area are relatively small. Each high-risk grid, however, is
distributed across a large number of sensitive populations, in-
dicating that medical resource planning still requires attention in
this area. 2) Heat wave vulnerability areas are not confined to
densely populated regions. Sensitive populations living in the sub-
urbs are also vulnerable to heat waves. Especially in estuarine cities,
such as Shanghai, where temperature changes are complex, a large
number of high-risk grids were distributed in the suburbs. These
conclusions are consistent with the results of previous heat-wave-
related mortality studies conducted in China, which found that
mortality rates were relatively stable in the central parts of cities

Table 3
ORs and 95% CIs for the association between a 1-unit increase in each factor
and net moderate and high heat-wave-related mortality ratios based on the
MLR.

Predictor OR (95% CI) p-Value

Net moderate heat-wave-related mortality ratio
E&S factor 1.210 (1.134, 1.428) 0.032
LAD factor 1.003 (0.997, 1.007) 0.012

Net high heat-wave-related mortality ratio
E&S factor 1.019 (1.002, 1.101) 0.037
LAD Factor 1.548 (1.209, 1.626) 0.002
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during heat waves but noticeably higher in the suburbs (Chen et al.,
2016; Gong et al., 2012). Furthermore, studies from other countries
also support this conclusion. For example, in the United States, heat-
related mortality was significantly higher in the suburbs during heat
waves (Madrigano et al., 2015b); and in France, temperatures in the
suburbs were unstable and medical resources were limited during a
heat wave disaster (Todd and Valleron, 2015). In summary, quan-
titative and innovative methods were implemented in this study to
support these relevant conclusions.

Some of the study's limitations should also be recognised. First,
certain variables associated with health concerns that may affect heat
wave vulnerability, such as disabilities and past medical history, were
not addressed in this study. With improvements in statistical collection
methods, these additional relevant variables should be included in fu-
ture artificial society simulations. Second, recent research determined
that ozone is also an important indicator that affects heat-related
mortality (Anderson and Bell, 2009). However, ozone data were not
recorded between 2010 and 2015 for the study area and were not in-
cluded here. Third, our analysis was limited by a lack of index data at
the long-term scale. Therefore, we only considered the recent situation.
However, the relationship between the impacts of E&S and LAD on
human health is dynamic in the urbanisation process. To better un-
derstand the location and type of urban environment that is at risk of
heat-related mortality in the future, a comparison study must be per-
formed for different years. Finally, we limited our analysis to urban
areas and conducted our study for one city in China. The results of this
study may not be applicable to regions with different climatic condi-
tions, such as inland cities, which are less affected by ocean currents.

Despite these limitations, our research is one of a few studies in
China to comprehensively describe urban environment vulnerability
and study its connection with mortality within a single coastal urban
area. By using multi-source spatial data to inform the different spatial
aspects of urbanisation features, we were able to evaluate which types
of vulnerability environments are at risk of heat-related mortality
caused by the varying features of urbanisation. Furthermore, by ap-
plying an artificial society to simulate the spatial distribution of sensi-
tive populations, we were able to visually depict those sensitive popu-
lations in Shanghai that are located in high heat-wave-related mortality
risk areas during heat waves without the scale limitation of population
statistics. These tools introduce a methodological system for studying
the relationship between urbanisation and human health that can serve
as a template for future comprehensive research at the local level.
Additionally, in actual heat wave disaster prevention planning, these
study results can provide a reference for preventing heat-related deaths.
In the future, we hope to use a greater range of health data to va-

lidate our measurement of heat wave vulnerability in different areas
and during different time periods. This information could further
highlight local differences among factors that contribute the most to
vulnerability.

7. Conclusions

In this study, we used various approaches to assess heat wave vul-
nerability at the city level by integrating data from remote sensing,
artificial society simulation and other multi-source geographic in-
formation. By using innovative assessment methods for each vulner-
ability index, we overcame the scale limit of statistical data.

Fig. 5. Mortality risk distribution map for heat wave disasters. Areas with HVI values > 3.2 are identified as high-risk areas. The number of sensitive populations in
these areas is shown based on an artificial society.
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The results of the factor analysis led to several conclusions. First,
different aspects of urbanisation have different impacts on disaster
vulnerability. In the present case, the exposure level and sensitivity
factors are increased because the city's thermal environment and eco-
system have been altered by the increasing intensity of human activity
in the process of urbanisation. However, the level of high temperature
adaptability is simultaneously enhanced by the rising social and eco-
nomic level of residents. Second, we explored the relationship between
these two influential urbanisation aspects and heat-wave-related mor-
tality using MLR. The results reveal that, in the study area, the E&S
factor impacts the lower limit of heat-wave-related effects on residents'
health and the LAD factor impacts the upper limit of the heat-wave-
related effects on human health.
Finally, we used the high value of these two factors combined with

the spatial distribution of sensitive populations obtained by using the
artificial society algorithm to map the distribution of heat-wave-related
mortality risk in Shanghai. The results reveal that the high-risk areas of
heat-wave-related mortality are not limited to the city centre but also
extend to the suburbs in coastal areas. Because of the ageing rural po-
pulation trend, this problem should be addressed.
This study demonstrates that vulnerability assessments can be per-

formed by mapping the vulnerability level within cities using multiple
sources of data and high spatial scale factors. Additionally, valuable
suggestions are presented to optimise local area studies on the effects of
heat waves on human health. And also, this study can provide valuable
inputs and decision-making support for planners and managers to re-
duce the risks under an increasing trend of urban heat wave disasters in
the future.
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