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1  |   INTRODUCTION

Since the publication of the seminal work of Griliches (1979), knowledge production has been an 
important topic in economic geography and regional science (Audretsch & Keilbach, 2004; Charlot, 
Crescenzi, & Musolesi, 2015; Crescenzi & Jaax, 2017; Jaffe, 1989; Lee, 2017; Miguelez & Moreno, 
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Abstract
There is consensus among scholars that social networks 
are important mechanism of knowledge spillovers. By oc-
cupying a central and advantageous network position in 
the collaboration network, it is easy for actors to access 
intangible external resources. However, empirical studies 
of the impact of network structure on knowledge produc-
tion remain scarce. Based on copublication data from the 
Web of Science database (WoS) from 2000 to 2015, we 
construct eleven international scientific collaboration net-
works and empirically estimate the impacts of multiple 
network properties, comprehensively measured by degree 
centrality, structure holes, and small‐world quotient, on 
national knowledge output. Empirical results based on 
fixed effect negative binomial models suggest positive ef-
fects of the three facets of network properties, that is, 
higher degree centrality, structural holes, and small‐world 
quotient are beneficial for facilitating and improving na-
tional knowledge production, which in turn encourages 
international academic collaboration.
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2013; Ó hUallacháin, & Leslie, 2007; Ponds, Oort, & Frenken, 2010). The knowledge production 
model assumes that the functional relationship between knowledge output and knowledge input is 
linear, the former mainly depends on a set of inputs, such as research and development expenditure 
(RDE) or human capital (Charlot et al., 2015; Lee, 2017). The new growth theory and knowledge‐
based economy have emphasized the importance of knowledge production or science and technol-
ogy, which are regarded as the sources of economic growth (Lucas, 1988; Nelson, 2000; OECD, 
1996; Romer, 1986). Therefore, knowledge and innovation are increasingly becoming the key for 
firms, cities, regions, and countries to maintain competitive advantages and sustainable development. 
However, knowledge does not stop flowing as spatial distances and territorial borders (Audretsch & 
Feldman, 2004; Pan, Kaski, & Fortunato, 2012). There is consensus among scholars that knowledge 
spillovers occur not only on the local or regional level but also on the national or even international 
scale (Bathelt, Malmberg, & Maskell, 2004; Gui, Liu, & Du, 2018; Hoekman, Frenken, & Oort, 2009; 
McKelvey, Alm, & Riccaboni, 2003; Scherngell & Hu, 2011).

When it comes to knowledge spillovers, there are two different research directions. One stream of 
the literature has adopted the regional knowledge production function approach based on the spatial 
econometrics techniques, which has been taken as a powerful tool for capturing spatial spillover ef-
fects (Basile & Mínguez, 2018) and is based on the assumption that geography is a channel for spill-
overs (Charlot et al., 2015; Ó hUallacháin, & Leslie, 2007; Ponds et al., 2010). The related literature 
has initially highlighted the spatial weight matrix, the parametric estimation methods and the impor-
tance of tangible inputs, however, recently the focus has shifted to network weight matrix, the semi-
parametric estimation methods, and intangible factors (Basile & Mínguez, 2018; Charlot et al., 2015; 
Hazır, LeSage, & Autant‐Bernard, 2016; Lee, 2017; Maggioni at al., 2007; Miguelez & Moreno, 
2013; Ponds et al., 2010). Another stream has taken social network analysis technique, a promising 
tool for capturing the structure and dynamics of relational spillovers effects, to enrich the literature 
on knowledge spillovers (Araújo, Gonçalves, & Taveira, 2018; Boschma & Ter Wal, 2007; Breschi & 
Lenzi, 2015, 2016 ; Fleming, King, & Juda, 2007; Gluckler, 2007; Ter Wal & Boschma, 2009). The 
related literature has focused on the influence of network properties on innovation performance or 
inventive productivity, such as external linkages and gatekeepers (Breschi & Lenzi, 2015), internal 
reach, external reach and clique density (Araújo et al., 2018; Breschi & Lenzi, 2016), network density 
(De Noni, Orsi, & Belussi, 2018), betweenness centrality (Broekel, Brachert, Duschl, & Brenner, 
2017), or small‐world structure (Fleming et al., 2007; He & Fallah, 2014). As Boschma (2005) put 
it, geographical proximity is neither necessary nor sufficient conditions for knowledge spillovers to 
occur, while network relations may act as transmission channels for knowledge diffusion (Bathelt et 
al., 2004; Breschi & Lissoni, 2009; Maggioni at al., 2007; Miguelez & Moreno, 2013; Ponds et al., 
2010). There is a growing body of literature recognizing the significance of network structure (Araújo 
et al., 2018; Crespo, Suire, & Vicente, 2014; De Noni et al., 2018; He & Fallah, 2014). Following this 
logic, taking only the spatial spillover effects into consideration and neglecting the role of network 
structure are insufficient.

In line with the second stream of literature, the objective of this article is to analyze the influence 
of network structure on knowledge production in collaboration network. With the globalization of 
science as the research background and a country as the unit of analysis, this paper constructs inter-
national scientific collaboration network based on publication coauthorship data from the Clarivate 
Analytics’ Web of Science database in the period from 2000 to 2015. By adopting knowledge pro-
duction function framework and social network analysis, we investigate the effect of three structural 
features in the collaboration network—degree centrality, structural holes, and small‐world quotient—
on national knowledge production performance. Our findings show that the coefficients of the three 
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network properties are positive and statistically significant in panel data estimates, which means that 
higher degree centrality, structural holes, and small‐world quotient will produce better future knowl-
edge output.

The main contribution of this paper is threefold. First, economic geography and regional science 
has emphasized the importance of network structure or network position, while there is a scar-
city of empirical analysis about the relationship between social networks and knowledge production 
performance. This study could substantially further our understanding of knowledge production. 
Second, this article unites both of the two perspectives: knowledge production function and social 
network analysis, which emphasizes the complementarity between internal inputs and external re-
sources. Third, copublications reflect knowledge flows better than copatents (Li & Phelps, 2017). 
Technological collaboration networks using copatent data have been extensively discussed in pre-
vious studies, while scientific collaboration networks using copublication data have received only 
limited attention.

The rest of the article is organized as follows: Section 2 provides a literature review and develops 
several hypotheses. Section 3 introduces the data and methodology. Section 4 presents the empirical 
results and findings. Conclusions and discussions are presented in the final section.

2  |   RESEARCH BACKGROUND AND HYPOTHESES

Current scientific research is entering the era of international collaboration (Adams, 2013), which 
plays a significant role in evolution of science (Coccia & Bozeman, 2016; Coccia & Wang, 2016). 
Across the globe, the percentage of internationally coauthored papers grew from 13.2% to 19.2% 
between 2000 and 2013; for each country, this increase in international coauthorship occurred during 
the same period (National Science Board, 2016). The rise of the global scientific network is changing 
the Atlantic axis (USA and Europe) pattern formed after World War II (Adams, 2012) and reshapes 
global scientific landscape (Royal Society, 2011). The globalization of science has been driven by 
factors such as international division of labor among researchers (Durkheim, 1997; Niosi & Bellon, 
1994), open innovation paradigm (Chesbrough, 2003), global challenges (Royal Society, 2011), and 
progress in Transportation and Information Communication Technology (Adams & Loach, 2015).

Location analysis is a customary and traditional task in human and economic geography. Similarly, 
position analysis is the center of gravity of social network research. So, location is to human and eco-
nomic geography what position is to network science. The embeddedness literature and social network 
theory suggest that actors are embedded in social relations and interactions that influence economic 
outputs (Borgatti, Mehra, Brass, & Labianca, 2009; Boschma, 2005; Granovetter, 1985; Polanyi, 1944; 
Wanzenbock & Piribauer, 2018). One of the most fundamental axioms in social network analysis is 
that “a node’s position in the network structure determines in part the opportunities and constraints 
that it encounters, and in this way plays an important role in a node’s outcomes” (Borgatti et al., 2009). 
By occupying a central position in the network, a node can easily access intangibly external resources 
(Tsai, 2000). The globalization of science increases the interconnectedness and interdependence of 
countries, which are actively or passively integrated into the global innovation network, and network 
ties can be seen as a channel through which nations assimilate external knowledge and exchange infor-
mation. Therefore, national knowledge output is not only attributable to in‐house R&D inputs but also 
depends in part on one’s position in the network structure. The goal of this study is to investigate the 
effect of network position (degree centrality, structural holes, and small‐world quotient) on national 
knowledge production.
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2.1  |  Degree centrality and knowledge output
Centrality measures the importance of nodes in the network, which is one of the most important 
structural features in network analysis (Freeman, 1979). Network centrality includes degree, between-
ness, closeness, and eigenvector centrality, which are measured from different perspectives (Dong & 
Yang, 2016; Freeman, 1979). Different types of centrality play different roles in knowledge diffu-
sion. Salman and Saives (2005) indicate that centrality variables tend to be correlated to one another, 
which could result in a multicollinearity of variables. Therefore, we choose degree centrality, which 
is widely discussed (Coffano, Foray, & Pezzoni, 2017; Mitze & Strotebeck, 2018; Tsai, 2001; Wang, 
Rodan, Fruin, & Xu, 2014). Degree centrality is a classic measure of network position, which refers 
to the number of other nodes directly connected to one node (Freeman, 1979). The greater a node’s 
degree centrality, the more innovation outputs are likely to be produced. First, a node with high degree 
centrality often occupies a central position and has an information advantage (Gilsing, Nooteboom, 
Vanhaverbeke, Duysters, & Oord, 2008). Specifically, these nodes are likely to have access to, share, 
and use desired, complementary, and heterogeneous resources that are critical to innovation activities 
(Borgatti, 2005; Tsai, 2001). Second, the reliability of networks directly depends on their vulnerabil-
ity to disruptive incidents, ranging in severity from random breakdowns to intentional attacks (Bell, 
Kanturska, Schmocker, & Fonzone, 2008; Cohen, Erez, Ben‐Avraham, & Havlin, 2001, 2000 ). A 
node with high degree centrality has more direct partners than others, which means that it has more 
alternative channels and means of linking with indirect nodes to increase the stability of external 
resources. Third, as innovation generally arises from combining or recombining existing knowledge 
elements (Fleming, 2001; Schumpeter, 1934), knowledge diversity will enhance the possibility of 
combination or recombination (Coffano et al., 2017; Wanzenbock & Piribauer, 2018). A country with 
high degree centrality has multiple information types, which can be recombined through a unique and 
novel mode. Consequently, we advance the following hypothesis:

H1: A national degree centrality in the scientific collaboration network has a positive 
effect on its future knowledge output.

2.2  |  Structural holes and knowledge output
Different from degree centrality, which emphasizes direct ties, structural holes highlight nonrepeated 
ties. According to Burt’s structural hole theory, structural holes refer to the nonredundant links be-
tween two actors, that is, a specific node’s two neighbor nodes are disconnected from each other 
(Burt, 1992), and are a strategic and influential position in the network (Ahuja, 2000; Belso‐Martinez, 
Diez‐Vial, Lopez‐Sanchez, & Mateu‐Garcia, 2018). In a collaboration network, it is impossible for 
all node pairs to have direct ties, except for a globally coupled network. Therefore, structural holes 
are a universal phenomenon. Scott and Carrington (2011) argue that structural holes are able to play 
the role of a bridge or intermediary. Hence, the concept of structural holes is similar with brokerage 
or gatekeeper (Araújo et al., 2018; Belso‐Martinez et al., 2018; Breschi & Lenzi, 2015). As an actor’s 
structural holes increase, its knowledge creation will improve for three reasons. First, actors spanning 
structural holes have advantages in accessing fresh information and controlling information diffusion 
(Burt, 1992; Granovetter, 1973; Zaheer & Soda, 2009) and can access novel information from remote 
partners and mediate the flow of knowledge and information between actors (Burt, 1992). Second, 
an actor maintaining a number of ties to many other actors is expensive to maintain (Goyal, 2007; 
Zaheer & Bell, 2005); when the number of ties reaches a threshold, information flows between actors 
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will be redundant and valueless (Leiponen & Helfat, 2010). Third, an actor bridging structural holes 
can receive fewer constraints and enjoy more autonomy in decision‐making (Burt, 1992; Shipilov & 
Li, 2008; Wang et al., 2014). Thus, the actor can be free from the restrictions of its partners (Cheon, 
Choi, Kim, & Kwak, 2015), such as opinion leaders and prevailing cognitive schemes that may hinder 
the willingness and effectiveness of actors to continue innovation (Janis, 1972; Wang et al., 2014). In 
short, an actor with rich structural holes is more likely to acquire novel and heterogeneous informa-
tion, have nonredundant ties and enjoy autonomy benefits, which will enhance an actor’s innovation 
performance.

H2: A national structural hole in the scientific collaboration network has a positive effect 
on its knowledge output.

2.3  |  Small‐world and knowledge output
According to Watts and Strogatz (1998), small‐world networks simultaneously possess a high clus-
tering coefficient and a short characteristic path length. The clustering coefficient refers to the pos-
sibility of a specific node’s neighbor nodes connecting to each other, and characteristic path length is 
defined as the average number of edges along the shortest paths between all pairs of actors (Uzzi & 
Spiro, 2005; Watts & Strogatz, 1998). The small‐world quotient is used to measure the degree of the 
network’s small‐world nature and calculated by the clustering coefficient divided by the path length 
(Chen & Guan, 2010; He & Fallah, 2014; Uzzi & Spiro, 2005; Zhang, Guan, & Liu, 2014). Thus, it 
tends to be seen as the interaction term for the clustering coefficient and path length (Fleming et al., 
2007; Schilling & Phelps, 2007). Numerous empirical studies suggest that the small‐world property 
will enhance actors’ knowledge creation for two reasons. First, the collaboration network as a social 
network is built on friendship, trust, and past interaction. Moreover, actors are inclined to connect to 
partners of partners; such triangle relationships are called closure or triadic closure (Ter Wal, 2014). 
The high clustering and dense ties are likely to share resources, curb opportunism, disseminate risk, 
promote trust, and facilitate information transmission in the clustered network (Granovetter, 1985; 
Hung & Wang, 2010; Uzzi & Spiro, 2005). Second, information from remote partners may be distorted 
by intermediaries during the process of information diffusion (Araújo et al., 2018; Schilling & Phelps, 
2007), and the validity of information decays with increasing distance or path length. Moreover, short 
path length can enhance information transmission efficiency, reduce the cost of collaboration, and 
expose actors to new information (Fleming et al., 2007; Gulati, Sytch, & Tatarynowicz, 2012). In 
short, small‐world structure increases trust, reduces the distance between actors, and efficiently and 
effectively facilitates information transfer.

H3: A national small‐world quotient in the scientific collaboration network has a positive 
effect on its knowledge output.

3  |   DATA AND METHOD

3.1  |  Data
Most internationally coauthored papers are found in Elsevier’s Scopus database and Clarivate 
Analytics’s WoS. However, unless otherwise noted, this study analyzes data on international 
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collaboration from the WoS. Because the WoS includes approximately 20,000 high‐quality scholarly 
journals published worldwide and is an ideal resource for the study of international collaboration in 
science. Moreover, it is often used in empirical studies (Cassi, Morrison, & Wal, 2012; Hoekman et 
al., 2009; Li & Phelps, 2017), which means that our selection is appropriate. In order to provide a 
wide‐ranging snapshot of global scientific collaboration, our data cover all disciplines, all citation 
indexes (SCI‐E, SSCI and A&HCI) and all document types (such as article, meeting abstract, editorial 
material, and review). In this paper, the WoS is extracted to retrieve data according to the following 
steps: (1) Extract each country’s annually collaborative partnerships between 2000 and 2015 from 
the Web of Science Core Citation database and save them as a TXT text file. (2) Construct a coun-
try‐by‐country association matrix using C++ program, where diagonal cell values denote the number 
of publications from country i in year t and other cells denote the number of copublications between 
country i and country j in year t. Since knowledge production is a cumulative and path‐dependent pro-
cess (Heimeriks & Boschma, 2014), we take a 5‐year moving window to construct dynamic collabo-
ration networks (Breschi & Lenzi, 2016; Cassi et al., 2012; Fleming et al., 2007). More specifically, 
a 5‐year moving window procedure is applied to reconstruct collaboration data, resulting in a total of 
11 symmetrically undirected and weighted networks. As explained below, R&D data are regarded as 
the control variables; otherwise, the estimation results may be biased. Given the availability of R&D 
data, our final networks contain 60 countries. In addition, as the number of copublications between 
countries shows significant differences, we prune those networks. Specifically, edges with more than 
100 copublications are retained, while others are dropped. Alternate threshold values have little effect 
on the panel estimates, such as 20 and 50.

3.2  |  Variables and statistical models
Although science does not necessarily lead to the publication of research papers, publication‐based 
measures are suitable and widely accepted as proxies of knowledge output (Cantner & Rake, 2014; 
Guan, Zuo, Chen, & Yam, 2016; Royal Society, 2011). We use the number of publications as the 
measure of national knowledge output (NKO). A 5‐year lags is introduced to minimize the possible 
problems of endogeneity and reverse causality in our model. More specifically, the control variables 
are measured by year t, the explanatory variables are calculated between year t and t + 4 (a 5‐year 
moving window) and the dependent variable is measured by year t + 5. Taking the year of 2000, for 
example, the R&D inputs are from 2000, the network indicators correspond to data from 2000 to 
2004, and the knowledge output is the number of papers published in 2005.

3.2.1  |  Degree centrality (DC)
Nodal degree centrality indicates the number of edges directly connected with node i (Freeman, 1979). 
In an international scientific collaboration network, degree centrality is the number of countries that 
country i collaborates with

where aij represents an adjacency matrix, aij = 1 when a link exists between country i and country j, 
and aij = 0 otherwise.

(1)DCi=

N
∑

j=1

aij
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3.2.2  |  Structural holes (SH)
Structural holes are measured based on network constraint (Burt, 1992). First, we calculate a dyadic 
constraint Cij between i and j with the formula below:

where q is the number of third‐party countries to which both i and j are connected and pij is the number 
of the focal country i’s network contacting with j (piq and pqj are defined analogously). For example, 
if i is tied to three countries with equal strength, then pij is 1/3.

The next step is to aggregate constraint measure Ci for country i:

To estimate SHi, we subtract Ci from 2 (Lee, 2010) to represent the extent to which countries tied 
to a focal country i are disconnected:

3.2.3  |  Small‐world quotient (SW)
Small‐world networks simultaneously consider the clustering coefficient and path length (Watts & 
Strogatz, 1998). First, the clustering coefficient (C) measures the probability of a specific node’s 
neighbor nodes, which are connected to each other:

where Ei is the actual number of edges among node i’s neighbor nodes and Ki is the number of node 
i’s neighbor nodes.

Second, characteristic path length (PL) measures the average number of edges along the shortest 
path for node i to reach other nodes, written as

where dij is the number of edges for the shortest path between i and j and n is the number of nodes i 
directly and indirectly reaching them.

To estimate SWi, we calculate the small‐world measure as the clustering coefficient divided by 
characteristic path length (Shi & Guan, 2016):

where Ci is node i’s clustering coefficient and PLi is node i’s characteristic path length.

(2)Cij =

(

pij+
∑

q,q≠i,q≠j

piqpqj

)2

(3)Ci=
∑

j

Cij

(4)SHi=2−Ci

(5)Ci =
Ei

ki(ki−1)∕2

(6)PLi=
∑

j

dij∕n

(7)SWi=Ci∕PLi
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Taking into account the impact of in‐house R&D inputs, we control several variables in the em-
pirical models, such as RDE, research and development personnel (RDR) and economic development 
level (EDL). First, we use gross expenditure on R&D (% of GDP) as a proxy for spending on science. 
Second, the number of full‐time equivalent researchers is the proxy used for human capital on science, 
which is measured by the logarithm of R&D researchers (Ln R&D researchers) in each country (re-
searchers per million people). Third, we employ the World Bank income group to measure the EDL of 
a country. According to the World Bank, the analytical classifications for country incomes are (1) low 
income, (2) lower middle income, (3) upper middle income, and (4) high income.

As discussed above, Table 1 lists and describes the dependent, explanatory, and control variables 
in the econometric models.

The dependent variable, the number of publications, is count data. Because the conditional vari-
ance of the dependent variable obviously exceeds its conditional mean, namely existing overdisper-
sion, we employ a negative binomial model instead of the Poisson model in our analysis (Araújo et al., 
2018; Breschi & Lenzi, 2015; He & Fallah, 2014; Miguelez & Moreno, 2013; Ponds et al., 2010). In 
addition, the Hausman test rejects random effects specification. Therefore, we use fixed effect nega-
tive binomial models to explore our hypotheses.

4  |   RESULTS

4.1  |  Descriptive analysis
As shown in Figure 1, the annual number of scientific publications in major countries shows a steady 
increase in the period from 2000 to 2015. Among them, China shows remarkable growth and is be-
coming a science superpower. In 2000, China publishes 31,959 papers and ranks eighth. In 2011, 
China publishes 173,643 papers, second only to the USA. In 2015, China publishes 306,831papers, 
50% more than the UK. Compared with the number of China’s publications in 2000, it increases 

T A B L E  1   Var iabl e descr ipt ions and dat a sour ces

Variable name Description Source

Dependent variable

NKO The number of publications in t + 5 year Web of science

Explanatory variables

Degree centrality The number of partners to which a focal country 
is directly connected

/

Structural holes The nonredundancy among ties in a focal 
country’s ego network is measured by network 
constraint

/

Small‐world quotient The ratio of clustering coefficient and character-
istic path length

/

Control variables

RDE The ratio of gross expenditure on R&D and 
GDP (% of GDP)

World bank

RDR Log of R&D researchers in a focal country World bank

EDL Dummy variable, the economic development 
level of a focal country

World bank
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by 274,872 in 2015 and is consistent with the significant exponential law of y = 28,403e0.1523x (R2 
= 0.992). China’s scientific growth averages 16.28% per year between 2000 and 2015. In the same 
period, the world’s annual scientific publications growth rate is 4.6%, and the United States’ is 3.1%. 
It is worth mentioning that the USA has ranked first in terms of publications, maintaining a large gap 
with other countries, and its status as a science superpower is ongoing. In 2015, the United States’ 
scientific output reaches 587,353, producing 27.02% of global publications, about twice as much as 
that of China. European countries are relatively stable: the annual growth rate of the UK is 3.53%, 
Germany’s is 3.60%, France’s is 3.39%, and Italy’s is 5.79%. In Asia Pacific, Australia had an annual 
growth rate of 7.8%, and its growth trend is significant as well. However, Japan represents low‐speed 
growth, with only 2.23% per year.

Figure 2 shows the evolution of the spatial structure of the international scientific collaboration 
network. The nodes represent countries, whose sizes are measured by weighted degree centrality, 
which is the sum of the article counts for each country’s tie. The edges denote the collaborative re-
lationships between two countries, with the thickness of the edges scaled to show absolute strength, 
i.e., the number of copublications. As noted earlier, edges with no fewer than 100 copublications are 
retained; others are removed. In 2000–2004, the international scientific collaboration network is dom-
inated by G7 countries, which includes the European Union (UK, Germany, Italy, and France), North 
America (USA, Canada), and Japan. The six largest collaborations occur between the USA and the 
other six countries. In addition, the total number of lines is 793, and the value of the network density 
is 0.45, which indicates that the whole network is weakly connected.

It is observed obviously that the global scientific landscape in 2010–2014 has undergone funda-
mental changes. The international cooperation once led by Europe and the United States is gradually 
replaced by the three‐polar world including Europe, North America, and Asia Pacific region. Bilateral 
partnerships between the USA and China outnumber all other international pairings. The number 
of knowledge production in other emerging nations, such as South Korea, Brazil, Singapore, South 
Africa, and Turkey, is rapidly rising. Traditional scientific superpowers and emerging scientific na-
tions coexist and are reshaping the scientific landscape. Moreover, it is also seen that international 

F I G U R E  1   Number of scientific publications in major countries (2000–2015)
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collaboration is not severely constrained by geographical distance and the main links occur between 
hub countries. In addition, the preferential attachment phenomenon is observed. Countries with low 
output are more likely to establish ties with countries with high output instead of collaborating with 
other countries that are geographically close (Guan, Zhang, & Yan, 2015). Finally, the total number of 
lines is 1,340, and the value of the network density is 0.76, which means that international collabora-
tion is more frequent and closer than before.

4.2  |  Regression analysis
Table 2 presents descriptive statistics and a correlation matrix. In our study, countries publish a mean 
of 32,859.52 papers per year, with a standard deviation of 72,832.04 papers, and the latter is more than 
twice the former, which reflects the heterogeneity of national innovation performance. By contrast, 
the standard deviations of explanatory and control variables are lower than their means. The average 
variance inflation factor is 2.71, and every variance inflation factor value is lower than 5, which sug-
gests that multicollinearity is not significant in this paper.

F I G U R E  2   Spatial patterns of international scientific collaboration network: (a) 2000–2004, (b) 2010–2014
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Table 3 displays the results of fixed effect negative binomial models on national innovation per-
formance. Model 1 in Table 3 is the basic model, which shows the estimated results of the control 
variables. Models 2, 3, and 4 are constructed based on Model 1, while to each are added degree cen-
trality, structure holes, and small‐world quotient, respectively. Model 5 presents the full model, which 
includes all control variables and explanatory variables. Not surprisingly, R&D expenditure, the num-
ber of researchers and the EDL present positive and statistically significant effects.

T A B L E  2   Descriptive statistics and correlation matrix

Variables Mean SD 1 2 3 4 5 6

NKO 32859.520 72832.040

Degree centrality 35.170 16.639 0.437***

Structural holes 1.718 0.115 0.196*** 0.665***

Small‐world 
quotient

0.640 0.106 0.042 0.653*** 0.712***

R&D expenditure 1.339 1.014 0.336*** 0.533*** 0.258*** 0.242***

Ln (R&D 
researchers)

7.339 1.169 0.216*** 0.519*** 0.427*** 0.324*** 0.861***

Economic 
development

3.414 0.749 0.177*** 0.425*** 0.338*** 0.231*** 0.553*** 0.677***

***p < 0.01, **p < 0.05, *p < 0.1.

T A B L E  3   Results of conditional fixed effect negative binomial models of NKO

Variables Model 1 Model 2 Model 3 Model 4 Model 5

R&D 
expenditure

0.1412***
(0.0375)

0.0736***
(0.0281)

0.0703**
(0.0288)

0.0228
(0.0311)

0.0537**
 (0.0272)

Ln (R&D 
researchers)

0.5092***
(0.0515)

0.3061***
(0.0388)

0.3253***
(0.0372)

0.4034***
(0.0394)

0.2821***
(0.0359)

Economic 
development

0.2604***
(0.0318)

0.1122***
(0.0220)

0.0843***
(0.0223)

0.1827***
(0.0240)

0.1002***
(0.0210)

Degree 
centrality

0.0223***
(0.0008)

0.0133***
(0.0014)

Structure holes 3.4611***
(0.1402)

0.9000***
(0.2278)

Small‐world 
quotient

1.6155***
(0.0816)

0.4628***
(0.0928)

Constant −1.5945***
(0.3302)

0.5336**
(0.2539)

−4.7531***
(0.2856)

−0.8376***
(0.2493)

−0.6358*
(0.3819)

Observations 660 660 660 660 660

Number of 
country

60 60 60 60 60

Log likelihood −5319.3086 −5067.9675 −5095.8803 −5140.4813 −5035.5106

Wald χ2 521.90 1859.98 1600.01 1629.26 2264.34

Note. Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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Hypothesis 1 predicts that a country’s degree centrality in an international scientific collaboration 
network is positively related to its future knowledge output. As shown in Models 2 and 5 in Table 
3, the coefficient of the degree centrality of a focal country is positive and statistically significant at 
p < 0.01. Countries with high degree centrality tend to publish more papers than those with low de-
gree centrality. Therefore, a country can benefit from its number of direct partners in the collaboration 
network. This not only corresponds with the findings of Guan et al. (2016), who use country‐level 
coauthored papers data, but also with those of Coffano et al. (2017), who use inventors’ collaboration 
networks in the Swiss medical devices sector. The increased number of direct ties of a country in an 
international scientific collaboration network is good for obtaining desired strategic resources and 
improving the stability and diversity of external knowledge sources. The increase of one unit in degree 
centrality corresponds to a 24.76% (= [e(0.0133*16.639) − 1]*100) increase in knowledge output, with all 
other variables held constant. Hence, Hypothesis 1 is confirmed.

Hypothesis 2 argues that a country with more structural holes in an international scientific collabo-
ration network tends to produce better innovation performance. The coefficient of the structural holes 
is positive and statistically significant at p < 0.01 in Models 3 and 5. A country collaborating with 
disconnected countries tends to increase knowledge output. This result is in line with comparable prior 
studies that employ interfirm collaboration network in the US microprocessor manufacturer (Wang et 
al., 2014) and metropolitan coinvention networks in US (Breschi & Lenzi, 2015). An actor with rich 
structural holes is more likely to acquire novel and heterogeneous information, have nonredundant 
ties, and enjoy autonomy benefits, which will enhance innovation performance. A one‐unit increase 
in structural holes corresponds to a 10.9% (= [e(0.9*0.115) − 1]*100) increase in knowledge performance 
in the full model. Therefore, Hypothesis 2 is supported by empirical results.

Hypothesis 3 states that a country’s small‐world quotient in an international scientific collabora-
tion network will facilitate its innovation performance. The reported regression coefficients of Models 
4 and 5 in Table 3 are positive and statistically significant at p < 0.01. A country with a high clustering 
coefficient and short characteristic path length in the collaboration network can have more knowledge 
output than others. Our empirical result is consistent with various empirical studies for the patent 
collaboration networks of 16 countries (Chen & Guan, 2010), interfirm collaboration networks on 
the basis of 11 high‐technology manufacturing industries alliance (Schilling & Phelps, 2007), and 
hi‐tech industry metropolitan clusters using inventor collaboration networks (He & Fallah, 2014). The 
small‐world structure increases trust and reduces distance between actors, and facilitates efficient and 
effective information transfer. A one standard deviation increase in the variable tends to raise the rate 
of paper publication by a factor of 0.05 (= [e(0.4628*0.106) − 1]*100) in Model 5. Thus, our findings 
support Hypothesis 3.

In unreported results, we also try to consider the quadratic term of the explanatory variables, but 
these are not statistically significant and robust.

4.3  |  Robustness analysis
To further test our hypothesis, a robust test was conducted. The total number of national papers can be 
divided into two parts: internationally coauthored papers and domestic papers. In a sense, internation-
ally collaborative outputs (ICO) are more easily influenced by network structure. In addition, interna-
tional copublications are cited relatively more often than purely domestic publications (Adams, 2013). 
As a consequence, an additional negative binomial regression with ICO is designed to test the robust-
ness of our results. The dependent variable is measured by the number of internationally coauthored 
papers. The control and explanatory variables are the same as regression analysis. As demonstrated in 
Table 4, degree centrality, structural holes, and small‐world quotient exhibit positive and statistically 
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significant impacts on ICO. Therefore, our previous findings from total national publications are sup-
ported by international copublications. Moreover, it is also evidenced that network structure has a 
greater impact on the latter.

5  |   DISCUSSION AND CONCLUSIONS

Despite social networks are important mechanism of knowledge spillovers, there is a scarcity of 
analysis on the influence of network structure on knowledge production. Using data on international 
copublications from the Web of Science core database, this paper constructs eleven country‐level 
collaboration networks between 2000 and 2015 and investigates the effect of degree centrality, struc-
tural holes, and small‐world quotient on national knowledge output. This article provides empirical 
evidence to support our research hypothesis. The regression results show that the coefficients of the 
three network properties are positive and statistically significant in panel data estimates, which means 
that occupying a central and strategic position in the network is instrumental for national knowledge 
production.

Our empirical analysis sheds some novel and interesting light on knowledge production (Griliches, 
1979) and knowledge spillovers (Jaffe, Trajtenberg, & Henderson, 1993). First, this study enriches the 
burgeoning body of literature on the determinants of knowledge output or innovation performance. 
The traditional knowledge production research explain knowledge outcomes as a function of tangible 
inputs (RDE or human capital), while a growing number of literature look to intangible or soft factors 
for explanations, such as culture and institutions, 3Ts of talent, technology, and tolerance (Florida, 

T A B L E  4   Results of conditional fixed effect negative binomial models of ICO

Variables Model 1 Model 2 Model 3 Model 4 Model 5

R&D 
expenditure

0.1562***
(0.0477)

0.0663*
(0.0341)

0.0846***
(0.0325)

−0.0105
(0.0318)

0.0303 
(0.0277)

Ln (R&D 
researchers)

0.4391***
(0.0617)

0.3010***
(0.0466)

0.3022***
(0.0420)

0.4140***
(0.0399)

0.2979***
(0.0365)

Economic 
development

0.2453***
(0.0404)

0.0550**
(0.0257)

0.0196 
(0.0245)

0.1389***
(0.0243)

0.0551***
(0.0212)

Degree 
centrality

0.0304***
(0.0010)

0.0131***
(0.0015)

Structure holes 4.9551***
(0.1543)

0.9874***
(0.2459)

Small‐world 
quotient

2.5085***
(0.0825)

1.2931***
(0.0948)

Constant −1.5962***
(0.3864)

0.1225
(0.3018)

−7.2059***
(0.3283)

−1.3244***
(0.2527)

−1.2667***
(0.4001)

Observations 660 660 660 660 660

Number of 
country

60 60 60 60 60

Log likelihood −4993.8321 −4687.7989 −4685.4621 −4661.0485 −4555.3731

Wald χ2 304.16 1712.36 1790.34 2541.64 3527.00

Note. Standard errors are shown in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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2002), creativity (Marrocu & Paci, 2012), psychology (Lee, 2017). However, the most important in-
tangible asset may be social capital (Dettori, Marrocu, & Paci, 2012), which is the resource obtained 
from the interactions between actors in social networks (Burt, 1992; Huber, 2009; Lin, 2002). As Burt 
(2005) put it, the rate of return on an actor’s tangible inputs depends on their social capital (network 
position). Second, the article increases the growing literature on relational spillovers effects. It is noted 
that knowledge spillovers not only occur in the local scale, but also take place at a global scale (Bathelt 
et al., 2004); not only occur through informal knowledge exchange, but also take place through formal 
networks of research collaboration (Ponds et al., 2010); not only represent spatial spillovers, but also 
perform relational spillovers (Maggioni et al., 2007). In the context of the globalization, informatiza-
tion, and networking, the determinants of knowledge spillovers has undergone fundamental changes, 
most notably the ups of relational and capability proximity and the downs of geographical and cultural 
proximity (Gui et al., 2018; Montobbio, Primi, & Sterzi, 2015; Ter Wal, 2014). Formal collaboration 
networks will be more important than informal knowledge exchange, because the former can occur 
over longer geographical distances (Ponds et al., 2010) and fresh and novel information from remote 
partners declines the risk of technological lock‐in (Crespo et al., 2014; He & Fallah, 2014).

This paper provides important implications for policymakers. First, it is found that the structure 
of the international scientific collaboration network has a positive and significant effect on national 
research output, and countries can benefit from a central and influential position in the network. 
Therefore, internationally collaborative science should be encouraged, supported, and facilitated 
(Royal Society, 2011). Given the globalization of science and technology, it is particularly important 
for a country to access external resources. These network relationships can act as channels that create, 
diffuse, absorb, exploit and share ideas, resources, knowledge, and information (Phelps, Heidl, & 
Wadhwa, 2012). Second, intercountry scientific collaborations seem to be a top‐down collaboration. 
In essence, international research collaborations are an aggregation of interindividual‐ and interin-
stitutional‐level collaboration, which are mainly driven by the bottom‐up strength. National policies 
should incentivize and stimulate researchers and institutions (e.g., universities and firms) to partici-
pate in international collaboration networks and help universities and researchers create and sustain 
flourishing partnerships (Adams, 2013). In terms of the individual level, Lee and Bozeman (2005) 
find that research grants have significant effect on scientific productivity. The goal of Europe 2020 
strategy is to build an integrated European Research Area and encourage international collaboration. 
For example, the EU’s “research budget” a significant portion of the funding is directly earmarked for 
international projects.

This article is meaningful, but has a few limitations. First, we concentrate only on intercountry col-
laboration networks. However, knowledge spillovers are doubly embedded in formal research collab-
oration and informal social networks. The latter may act as an invisible college (Price, 1986). Second, 
we investigate the impacts of network position (degree centrality, structural holes, and small‐world 
quotient) on national knowledge output, but no attention is paid to the question that what can influ-
ence a country’s position in the network structure. Third, knowledge spillovers take place at different 
geographical scales. The empirical framework of this paper can be adopted at the meso‐level scales, 
such as the city or region level.
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