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Abstract
The dependence and contribution of explanatory variables or predictors to water yield need to
be closely analyzed and accurately quantified to better understand water balances as well as for
effective water resources management. It is generally challenging, however, to disentangle the
contribution of individual climate variables from that of basin characteristics to the integrated
water yield response. Here we propose a method to concurrently quantify and analyze the
effects of climate and basin predictors on water yields. This method employs the Soil and
Water Assessment Tool (SWAT) to simulate water yield. Simulated results are then analyzed
and compared using Boosted Regression Trees (BRTs) at multiple spatial and temporal scales.
Results indicate that in the Yangtze River Basin (YRB) on average, precipitation is of
paramount importance, followed by land cover, while slope has the lowest contribution. The
average relative contributions of soil moisture, maximum and minimum temperatures are
different among temporal scales. More stable and reliable results are derived at the daily scale
compared to the yearly and monthly scale. Our results make evident that generalizations about
water yield response made in the absence of a comprehensive and accurate description of site-
and scale-specific contributions can lead to misleading assessments. This proposed approach
can be useful for informing and supporting more effective water resources management goals.
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1 Introduction

It has long been recognized that climate conditions and basin physical characteristics are
dynamically coupled through the physical processes that transport and store water across
the land surface and subsurface. Water yield, defined as the total amount of water leaving a
hydrological response unit and entering the stream network during a given period (Arnold
2012; Stone et al. 2003), is of great importance as it supplies water resources to human
being and natural resources. However, water yield has a highly non-linear response to and
complex interaction with major environmental factors such as climate conditions and basin
physical characteristics (Feng et al. 2012; Liu et al. 2011), resulting in highly variable and
contradictory results in previous studies (Berg et al. 2016; Pessacg et al. 2015; Rice et al.
2015; Sun et al. 2006; Zhou et al. 2015). There is a need to explore the effect of multiple
factors, both meteorological and landscape-related, on water yield (Feng et al. 2012;
Pessacg et al. 2015).

Case studies of paired watershed experiments worldwide have reported the effects of
climate and forestry variability on water yield, e.g., Brown et al. (2005), Gokbulak et al.
(2016), Wu et al. (2015), and Yao et al. (2015). Based on these evidence, studies have
sought to generalize our understanding of water yield variations. For example, Zhou et al.
(2015) proposed a unifying theory to describe the relative influence of climate and basin
factors on water yield response globally based on the relationship among water yield, a
wetness index, and basin characteristics, deepened our understanding of the dependence of
global hydrological response patterns to land cover and climate; Wang et al. (2011)
obtained a statistical relationship between water yield and some of its predictors (e.g.,
precipitation, forest cover, and altitude) in northern China. Despite these efforts, describ-
ing the relative roles played by different climate variable and basin characteristic in
determining water yield is largely absent. It can serve to improve our understanding of
the main underlying mechanisms governing basins, in support of a variety of water
resources management goals.

Progress has been made during the past decades in understanding how water yield
varies with scale (Berg et al. 2016; de Vente and Poesen 2005; Kuria and Vogel 2015;
Wang et al. 2010). There is now strong experimental evidence indicating that scale is a key
control variable for water yield studies, and perhaps one of the main reasons for why past
studies are often inconclusive or show conflicting results (McDonnell et al. 2007). The
influence of spatial scales on water yield has been quantified and detected at the site (Lu
et al. 2013), basin (Gharun et al. 2014; van Dijk et al. 2012; Wang et al. 2011), country
(Sun et al. 2006), and global (Farley et al. 2005) scale. The basin scale ranging from small,
~148 km2 (Gharun et al. 2014), to very large, ~1,300,000 km2 in the case of the Missouri
River basin, United States (Stone et al. 2001). The influence of temporal scales on water
yield has been quantified primary at the yearly (Adams and Fowler 2006; Yao et al. 2015)
or seasonal (monthly) scale (Feng et al. 2012), while studies that consider the daily scale
are notably rare, particularly for large basins. The effects of predictors on monthly and
daily water yield are less well understood, even though the effects can be as or more
important than at the yearly scale (Brown et al. 2005), depending on the application.
Indeed, it is currently difficult to understand and assess how water yield changes with the
temporal scale since studies tend to consider a single scale. To the best of our knowledge,
no systematic study about the effects of predictors on water yield across both spatial and
temporal scales has been undertaken.
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In aiming to close the aforementioned knowledge gaps in describing the relative roles
of different climate variables and basin characteristics in determining water yield across
both the spatial and temporal scales. Our overall objectives with this study are i) to
disentangle the relative contributions of climate and basin characteristics to total water
yield for the Yangtze River Basin; ii) to identify the marginal effects of predictor variables
on water yield; and iii) to detect the influencing effects of different spatial and temporal
scales on relative contributions of predictors to water yield.

2 Methods and Data

2.1 Study Area

As the study area, the Yangtze River Basin (YRB) is used. The YRB, with a drainage area
of ~1.8 million km2 and spatial extent of 24°30′ - 35°45′ N and 90°33′ - 112°25′ E, is the
third largest river basin on Earth. It originates in the Tibetan Plateau, crossing China from
west to the east and finally flowing into the East China Sea (Fig. 1), draining nearly 20%
of the land area of the country (Xu et al. 2008). Characterized by great disparity of terrain,
the YRB is comprised by a diverse physiography, climate, hydrology, soil, and other
natural geographic conditions. The long-term annual precipitation ranges from 500 mm in
the west to 2,500 mm in the east, with an average of 1,070 mm. More than 60% of the
annual precipitation is brought by the monsoon winds and falls primarily as rain in the
summer months of June – August (Zhang et al. 2008). The Yangtze carries more water
than any other river in China.

2.2 Water Yield Estimation

Water yield is obtained in this study via simulation using the Soil and Water Assessment Tool
(SWAT). Compared with using statistical relationships between water yield and selected
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variables, it is preferred, whenever feasible, to directly model water yield by taking into
consideration the physical processes involved (Neitsch et al. 2009). The SWAT divides the
river basin into a number of hydrological response units (HRUs), each of them possessing a
unique land cover/soil attribute/slope gradient identifier. The water yield for the basin is
predicted as the total amount of water leaving the HRUs and entering the stream network
during a time step (Arnold 2012; Neitsch et al. 2009). The basis of the water yield simulation is
given by

Wateryield ¼ SRþ LFþ GD–TL–PA;

where SR, LF, GD, TL and PA, respectively, stand for surface runoff, lateral flow, groundwater
discharge, transmission losses and pond abstractions.

In this study, the YRB is divided into 20,215 HRUs. To assess the effect of spatial scale on
water yield and its predictors, the 20,215 HRUs are analyzed at three different spatial scales: i)
the large basin scale, i.e., the whole YRB with a drainage area of 1,726,335.81 km2; ii) the
intermediate basin scale, i.e., the YRB divided into 11 adjoining intermediate basins with
drainage areas ranging from 83,651.28 km2 to 264,571.96 km2, with the median being
164,564.14 km2; and iii) the small basin scale, i.e., the YRB divided into 125 adjoining small
basins with drainage areas ranging from 6.12 km2 to 85,723.55 km2, with the median being
11,190.58 km2. Figure 1 illustrates the small and intermediate basin scale. In order to account
for different temporal scales, the simulations are conducted at the yearly, monthly and daily
scales using ten years of data (1994–2013). The SWAT model was built, monthly calibrated
and implemented by Sun et al. (2016). Herein, we further calibrate the SWAT model at daily
scale to increase the modeling accuracy. A consecutive 21-year long daily discharge observa-
tions at 18 hydrological stations are used for the calibration. The calibration and validation
period are 15 years (Jan. 1st 1990 - Dec. 31st 2004) and 6 years (Jan. 1st 2005 - Dec. 31st
2010), respectively. The performance of the SWAT model is routinely measured by the
Coefficient of determination (R2), which measures the proportion of the variance in measured
data explained by the modeled data and the Nash-Sutcliffe coefficient (NS), which measures
the relative magnitude of the residual variance compared to the measured data variance. R2

ranges between 0 and 1, the higher the value the better the fit, and values greater than 0.5 are
considered acceptable. NS ranges from −∞ to 1, with the performance rating acceptable if
values between 0 and 1 (Castillo et al. 2014). Overall, with a medium (range) R2 and NS equal
to 0.84 (0.44–0.9) and 0.71 (0.32–0.89) (Table 1 and Fig. 2), respectively, for the combined
calibration and validation period (1990–2010), the established SWAT model quite accurately
reproduces the rainfall–runoff process for the YRB, and is suitable to investigate the water
balance processes in the YRB.

To understand the importance of different components in predicting water yield, the
analysis is herein focused on a few major environmental variables, including precip-
itation, maximum and minimum temperature, land cover, soil, and slope (Table 2).
Note that the land cover, soil and slope variables are comprised by 9, 139, and 5
different categories, respectively. We obtained these categories from various datasets
as described by Sun et al. (2016). These variables are key providers and mediators of
moisture and energy which drive water yield processes and runoff potential. These
variables have been identified and used in several previous water yield studies (Mehta
et al. 2011; Wang et al. 2010). They have been proven to be useful and relevant for
understanding and modeling water yield.
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2.3 Statistical Analysis by BRT Model

It is generally challenging to separate the contribution of individual variables to the
integrated water yield response, while the Boosted Regression Tree (BRT) models is skilled
in analyzing the strong non-linearity between water yield response and major environmental
variables. BRTs estimate the importance of each predictor through a hierarchical binary
splitting procedure that maximizes differences among variables. At each step, a forward
stagewise process reserves existing trees that already built and adds new trees by reweighing
residuals from previous trees. The BRT models therefore produce thousands of trees and a
mean variable importance estimate is extracted across all trees (De'ath 2007; Elith et al.
2008; Friedman and Meulman 2003; James et al. 2013). The procedure is summarized in
Fig. 3, f(x) approximates the relationship between response variable y and predictor vari-
ables x. The βm represent weights given to the nodes of each tree and determine how
predictions from each of the trees are combined. The parameters βm and γm are estimated by
minimizing a specified loss function sequentially from 1 to M (De'ath 2007).

This BRTs also produce partial dependence plots to assist with visualizing the “average”
effect of each predictor variable on the response variable (Golden et al. 2016). The superior
performance of BRTs in dealing with problems requiring the separation of complex and highly
interdependent variables has been widely recognized in recent years (Liu et al. 2016; Price
2011). Despite several applications on hydrology related topics, e.g., Hale et al. (2014);
Golden et al. (2016); Salazar et al. (2016); Naghibi et al. (2018), the BRT models are still
rarely used.

Table 1 Summary of the SWAT model performance

Streamflow gauge name Gauge No. Calibration Validation

R2 NS R2 NS

Shigu 1 0.71 0.32 0.84 0.68
Panzhihua 2 0.80 0.67 0.85 0.74
Huatan 3 0.88 0.67 0.90 0.68
Pingshan 4 0.88 0.70 0.90 0.70
Gaochang 5 0.61 0.47 0.62 0.43
Zhutuo 6 0.83 0.72 0.87 0.72
Wusheng 7 0.44 0.41 0.55 0.55
Beibei 8 0.49 0.48 0.53 0.53
Cuntan 9 0.83 0.77 0.82 0.76
Wulong 10 0.52 0.46 0.57 0.40
Wanxian 11 0.84 0.78 0.84 0.79
Huanglingmiao 12 0.85 0.84 0.79 0.74
Yichang 13 0.86 0.81 0.79 0.74
Shashi 14 0.87 0.83 0.81 0.70
Chenglingji 15 0.63 0.61 0.62 0.60
Luoshan 16 0.89 0.87 0.87 0.80
Hankou 17 0.90 0.89 0.88 0.86
Datong 18 0.86 0.83 0.86 0.83
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For this study, 411 BRT models are used (375 models for the small basin scale, 33 for
the intermediate basin scale and 3 for the large basin scale) to analyze the effect of spatial
scale on water yield and its predictors. The BRT models are developed by means of the R-
software (R Core Team 2014), specifically by using its package ‘dismo’ (Elith and
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Leathwick 2015) with ‘gbm’ functions (Ridgeway 2007). According to the recommenda-
tions by Elith et al. (2008), all the BRT models used in this study have a learning rate of
0.005, a bag fraction of 0.5, a tree complexity of 5, and 10-fold cross validation. The
performance obtained for the BRT models is adequate for assessing the relative contribu-
tion of climate and basin characteristics to determining water yield. The comparison of the
average BRT results is validated via the one-way ANOVAS followed by Tukey’s honest
significant difference (HSD) test, where conditions of normality and homogeneity of
variance are not met, non-parametric Krukal-Wallis tests are used.

Table 2 Summary of candidate predictor variables used to develop the BRT model of water yield

Variable Definition Types (unit) Mean ± SD Range

Water yield Dependent variable Continuous (mm) 1.6 ± 4.0 0 – 405.9
Land cover Independent variable (9 categories) Nominal (unitless) / /
Soil Independent variable (139 categories) Nominal (unitless) / /
Slope Independent variable (5 categories) Ordinal (unitless) / /
Precip Independent variable Continuous (mm) 3.0 ± 10.2 0 – 423.8
MaxTem Independent variable Continuous (°) 21.2 ± 9.7 −15.5 – 42.8
MinTem Independent variable Continuous (°) 11.5 ± 10.0 −29.5 – 32.6

Precip Precipitation, MaxTem Maximum temperature, MinTem Minimum temperature
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3 Results

3.1 Relative Contribution of the Predictor Variables to the Total Water Yield

In this subsection, based on the 411 fitted BRT models, the results of the relative contribution
of the six predictor variables to the total water yield are summarized and presented. The results
are presented for the different basin (i.e., small, intermediate and large) and temporal (i.e.,
yearly, monthly and daily) scales considered. At the small basin scale, the relative contribution
of the individual variables to the total water yield exhibits remarkable differences. The BRT
analysis results at the small basin scale are illustrated and summarized in Fig. 4 and Table 3.
For the small basin scale, the ranking of the mean contribution of each of the predictors to the
total water yield indicates that precipitation is the most important predictor across the three
temporal scales, followed by land cover, whereas slope is the least important having the lowest
contribution to water yield (P < 0.001) (Table 3). The average contributions of the predictors
based on the yearly and daily simulations have the exact same ranking orders; whereas in the
case of the monthly simulations, the relative contribution of the minimum and maximum
temperature outnumber the soil contribution to the water yield (Table 3).

Although the ranking values of the six predictors at the yearly and daily scales are the same,
the value of their mean proportions shows significant differences. To be precise, at the yearly
scale, precipitation and land cover account for up to 94.4% of the total contribution or
importance to water yield, leaving the remaining 5.5% for the other four variables to share.
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By contrast, at the daily scale, these four variables represent 31.2% of the total contribution.
Moreover, variability, measured by the standard deviation (SD) of the contribution of each
small basin (Fig. 4), tends to be large for the yearly contributions, especially for precipitation
(SD = 29.6), land cover (SD = 30.4) and soil (SD = 10.1). The variability for the daily contri-
butions is the smallest, the range for SD is between 2.7 and 13.3. Furthermore, the relative
contributions at the yearly scale can be as much as 100 and 93.8 for precipitation (Fig. 4a) and
land cover (Fig. 4b), respectively; while the corresponding contributions at the daily scale are
97.6 and 43.7, respectively. Note that the relative contribution of each variable is scaled so that
the sum adds to 100, with higher numbers indicating stronger influence on the response. The
contributions from land cover, maximum temperature, minimum temperature, and slope differ
much more markedly (P < 0.001) among the three temporal scales compared to precipitation
(P = 0.803) and soil (P = 0.875) (Table 3).

At the intermediate basin scale, the differences among the mean percent contribution for
precipitation, land cover, soil and slope are not significant at any of the three temporal scales
considered, as determined by the Kruskal-Wallis test (Fig. 5 and Table 4, P > 0.05). For
instance, the percent contribution for precipitation is 65.2, 71.7 and 61.7 at the yearly, monthly,
and daily scale (Table 4), respectively, and the differences among these percentages are not
significant. Moreover, both the SD and range (i.e., the difference between the maximum and
minimum contribution) are smaller than that of the small basin scale for all the predictors.
Nevertheless, large variations in the contributions from precipitation and land cover are still
evident at the intermediate basin scale.

μMean, SD Standard deviation, Precip Precipitation, land Land cover,MaxTemMaximum
temperature, MinTem Minimum temperature. Significances are determined using Kruskal-
Wallis tests.
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For the large basin, all of the predictor variables contribute to water yield at the daily scale
(Table 5). At both the yearly and monthly scale, however, it is found that only precipitation and
land cover contribute to water yield. In addition, among the three temporal scales considered,
the importance of precipitation tops at the monthly scale, while the importance of land cover
tops at the yearly scale.

Figure 6 summarizes the mean and SD of the contribution to water yield from the predictor
variables at the different spatial and temporal scales considered. The predominance of precip-
itation is evident at all temporal scales followed by land cover. The contributions from the
slope predictor are insignificant at all three temporal scales. At the yearly scale (Fig. 6a), the
relative importance of precipitation and land cover comprise about 97.87% on average,
making the influence of the other four variables negligible. A strong negative correlation is
found between precipitation and temperature at the yearly scale (R = − 0.92, P < 0.001,
Pearson correlation). The relative importance of climate variables (e.g., precipitation,

Table 5 Results from the BRT analysis showing the relative percent contribution of predictors to water yield at
the large basin scale. At this scale, only one large basin is considered

Precipitation Land cover Soil Min temperature Max temperature Slope

Yearly 68.25 31.75 0 0 0 0
Monthly 81.79 18.21 0 0 0 0
Daily 72.28 15.03 10.78 1.87 0.03 0.01
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Fig. 6 Summary of the mean and SD for the BRT analysis results across spatial and temporal scales
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maximum and minimum temperature) is more prominent at the monthly scale compared with
both the yearly and daily scale. The largest proportion of temperature contribution occurs at the
monthly scale, while soil contributions are only significant at the daily scale, which is also
corroborated by Tukey’s HSD post hoc tests. The yearly scale shows the most substantial
variability in contribution, whereas analysis of the daily scale leads to the opposite conclusion.

The analysis presented in Fig. 6 summarizes the general behavior of the predictors
according to their percent contribution to water yield. But how many small basins or
intermediate basins (i.e. statistical units) follow this general behavior? Are there trends along
the spatial and temporal scales? To tackle these questions, we look at each of the predictor
variables and determine the total percent of basins that have a particular variable ranked within
the same order (Table 6). The ranking is done at each of the temporal (yearly, monthly and
daily) and spatial scales (small and intermediate basins only, since the large basin is comprised
of one statistical unit). From this analysis (Table 6), it is found that the general behavior does
not hold true for all the statistical units, and more statistical units tend to adhere to the proposed
general behavior with increase in statistical area (i.e., spatial scale) and decrease in temporal
scale. For example, at the yearly scale, precipitation ranks as the 1st most important predictor
of water yield, comprising about 48.8% of the total small basins and 72.7% of the total
intermediate basins. Furthermore, land cover ranks as the 2nd most important factor to
contribute to water yield, consisting of about 39.2% of the total small basins whereas 63.6%
of the total intermediate basins. Similar conclusions can be drawn at both the monthly and
daily scales.

Table 6 Summary of the ranks of the percent contributions for the predictor variables

Variable Small basin Intermediate basin

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Year Precip 48.8 48.8 1.6 0.8 0 0 72.7 27.3 0 0 0 0
Land 48.0 39.2 8.0 4.8 0 0 27.3 63.6 9.1 0 0 0
Soil 3.2 4.8 39.2 20.8 31.2 0.8 0 18.2 72.7 9.1 0 0
MaxTem 0 3.2 48.8 36.8 10.4 0.8 0 9.1 54.5 36.4 0 0
MinTem 0 6.4 39.2 40.8 13.6 0 0 9.1 63.6 18.2 9.1 0
Slope 0 0.8 20 24.0 40.8 14.4 0 9.1 54.5 27.3 9.1 0
Total 100 103.2 156.8 128.0 96.0 16.0 100 136.4 254.5 90.9 18.2 0

Month Precip 82.4 10.4 4.8 1.6 0.8 0 100 0 0 0 0 0
Land 4.8 48.0 10.4 22.4 10.4 4.0 0 63.6 0 36.4 0 0
Soil 2.4 0 8.0 37.6 51.2 0.8 0 0 18.2 45.5 36.4 0
MaxTem 0 24.8 32.8 36.8 5.6 0 0 0 63.6 36.4 0 0
MinTem 10.4 16.8 47.2 17.6 8.0 0 0 36.4 54.5 9.1 0 0
Slope 0 0 1.6 24.0 36.0 38.4 0 0 18.2 45.5 9.1 27.3
Total 100 100 104.8 140 112.0 43.2 100 100 154.5 172.7 45.5 27.3

Day Precip 91.2 3.2 4.8 0 0.8 0 100 0 0 0 0 0
Land 2.4 46.4 38.4 7.2 4.8 0.8 0 81.8 18.2 0 0 0
Soil 0.8 45.6 41.6 8.8 3.2 0 0 18.2 81.8 0 0 0
MaxTem 0 1.6 1.6 16.8 63.2 16.8 0 0 0 18.2 45.5 36.4
MinTem 4.8 3.2 13.6 64.0 12.8 1.6 0 0 0 81.8 18.2 0
Slope 0.8 0 0 3.2 16.0 80 0 0 0 0 36.4 63.6
Total 100 100 100 100 100.8 99.2 100 100 100 100 100 100

Precip Precipitation, land Land cover, MaxTem Maximum temperature, MinTem Minimum temperature. The
rankings of relative contribution with the same value of 0 are all assigned to the first sequence
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3.2 Marginal Effects of Predictor Variables

The BRT model for the large basin, at daily scale, is selected to detect and assess the marginal
effects of individual predictors. Marginal effects are informative for summarizing how the
change in water yield response is related to a change in the predictor based on a single-variable
split regression tree, which conditions out the dependency of the response on the remaining
predictors (De'ath 2007). Specifically, the marginal effect of each predictor on water yield is
obtained here by holding all the other variables at their average values. Monotonic transfor-
mation is used in the BRT models to simplify the optimization process without affecting the
marginal effect ranking orders of the input predictors. Marginal effects from the fitted models
indicate that, when other variables are held constant, high water yields are most likely to be
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found in places with heavy precipitation, high temperature, cultivated or artificial land surface
(Fig. 7).

4 Discussion

4.1 Controls on Water Yield

Not surprisingly, our analyses clearly demonstrate that precipitation, which accounts on
average for one half (small basin scale) to three-fourths (large basin scale) of the relative
contributions to water yield, is a driver of paramount importance for water yield across
temporal and spatial scales in the YRB. It is well known that precipitation is a primary driver
of water yield (Pessacg et al. 2015); its average value is often used as an indicator for water
managers and policy makers to guide allocations of water resources. In the YRB, daily water
yield responds positively to daily precipitation from 0 mm to around 200 mm (Fig. 7a). A
stepwise respond occurs thereafter due to the fact that the only 10-year average precipitation
intensity values higher than 200 mm/day are 323.7 and 423.8 mm/day.

Land cover, the second most influential predictor of water yield in this study, as indicated
before by Liu et al. (2011), have average importance of 36.05, 18.94, and 17.98% at the yearly,
monthly, and daily scale, respectively. At the daily scale, water yields from artificial land
(featured by impervious surfaces) and cultivated land (featured by tremendous human distur-
bance) are the highest, followed by wetland, grassland, snow, forest, shrubland and bareland.
The influence of land cover changes on water yield is a current hot topic of discussion for
researchers. Water yield was found to be highly sensitive to land use land cover variation in
Patagonian watershed, which typically includes some kind of gradient including forests,
grasslands and shrublands (Pessacg et al. 2015). Various characteristic factors related to
vegetation variations could influence water yield, including ET rates (Lu et al. 2013), water
consumption (Salemi et al. 2012), water retention capacity (Wang et al. 2014), plant rooting
depths (Sun et al., 2006), and percolation (Nie et al. 2011), among others.

The importance of soil on water yield tends to be more accentuated at the daily scale
than at monthly and yearly scale. As indicated by Sun et al. (2006), soil thickness is an
important physical basin parameter that determines how soil water used by different
vegetation covers will vary due to distinct plant rooting depths. In our case, the differences
in contributions of soil categories can be attributed to that different hydrologic soil groups
have different soil moisture contents (Stone et al. 2003) and runoff potentials (Wang et al.
2010).

The BRT models captures well the dynamic correlation between water yield and maximum/
minimum temperature at the monthly time step. Temperature is a crucial variable of the
hydrologic cycle, whose importance is only second to precipitation among the climate
variables (Stone et al. 2001). At yearly and daily scale, however, the contribution of temper-
ature to water yield in the YRB is relatively low. This is consistent with other studies that the
effects of precipitation could mask the effects of temperature on water yield (Lu, 2013). With
this study, we find that daily water yield responds positively to daily minimum temperature
from −3 °C to around 20 °C (Fig. 7d). When temperature goes beyond 20 °C (Fig. 7d), the
influence of daily minimum temperature on water yield stays stable. Although the influence of
daily maximum temperature on daily water yield is relatively small, according to its percentage
contribution of 0.03% (Fig. 7e), a slight increase around 3 °C can be seen. Both snowfall and
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snow melt are associated with temperatures around 0 °C, thus both the maximum (Fig. 7e) and
minimum (Fig. 7d) temperature show increasing trends after 0 °C. Interestingly, we find that
minimum temperature plays a more important role than the maximum temperature in influenc-
ing water yield, albeit marginally. This could be attributed to that snowfall and snow melt exert
more influence on minimum temperature than maximum temperature. More evidence should
be drawn to validate this finding.

We find that the contribution of slope tends to be around zero for most cases, which
indicates that compared with other environmental factors, the importance of slope in regulating
water yield is in this case negligible. This may be because slope has a direct effect on the travel
time of water but only an indirect impact on total water yield. Further research is needed to
provide additional evidence for this.

4.2 Implications and Recommendations for Future Studies

Researchers have found that the relationship between basin physical properties and water yield
is variable (Lu et al. 2013; Wang et al. 2011). However, research efforts dedicated to
uncovering changes in water yield response across both spatial and temporal scales are rare.
In this study, by combining the SWAT with BRT, the relationships between water yield and
predictor variables at multiple spatial and temporal scales are quantitated and compared. Our
analyses clearly demonstrate that the response of water yield to climate and basin character-
istics is geographically variable and largely dependent on the scale.

In terms of spatial scales, distinct characteristics are observed from the large basin to
small basin scales. On one hand, the macroscale basin perspective gives a whole picture of
the general relationship between water yield and its determinants along with their marginal
effects, which is especially beneficial for macroscopic risk prevention and high-level
decision-making. On the other hand, significant differences in relative contributions are
found within smaller scale basins (Fig. 3 and Table 6). Clearly, the impact of climate and
basin characteristics on water yield is basin-specific, making it impossible to specify the
actual quantitative relationships using a universally applicable criterion. In this context,
we suggest that it is inappropriate to discuss the contribution of different environmental
factors to water yield without referring to the specific site and temporal scale. Moreover,
the large variations in water yield response greatly complicate extrapolation across scales,
suggest that any extrapolation of water yield relationships from one basin to another must
be done with caution (Berg et al. 2016; de Vente and Poesen 2005; Zhou et al. 2015). The
significant differences in relative contributions can be attributed to the non-linear nature of
processes within the hydrological cycle.

In terms of the temporal scales considered, the results tend to become more stable and
reliable from the yearly to the daily scale. Firstly, judging from the SD values, variations
decrease from the yearly to daily scale. Secondly, the coarser scale may not tell the complete
story because the contribution of land cover at yearly scale is very dominant making the
remaining four factors insignificant, e.g., soil moisture is one of the many factors that can be
assumed negligible at the yearly scale. Similarly, at the monthly scale, the importance of
meteorological predictors on water yield are amplified due to their explicit seasonal character,
while this is not the case at the daily scale. Finally, yet importantly, simulations at the daily
scale are more detail and rich in their representation of hydrological processes than coarser
scales. The daily scale offers an opportunity for studying and observing the relative contribu-
tion of factors that may be misrepresented at coarser scales. It is reasonable to recommend that

3464 Sun F. et al.



researchers studying changes in water yield should prioritize conducting their studies at finer
temporal scales. Previous studies have mostly been focused on the yearly scale (Brown et al.
2005), particularly for large basins.

Although BRT is advantageous in capturing the complex and non-linear relationships
between hydrological respondents and their explanatory variables. The potential drawbacks
of BRT models should be noted. First, the confidence interval as well as the significance of
difference cannot be derived for BRT’s relative contribution calculation (Chung 2013).
Second, the BRTs require extensive calculations to optimize parameters of improved predictive
performance, including shrinkage, tree complexity, number of trees, and bagging fraction,
which escalates the computation time (Saha et al. 2015).

5 Conclusions

This study analyzes the dependence and contribution of predictors to water yield in the YRB,
with the aim of eventually informing and supporting more effective water resources manage-
ment goals. A new method coupling a hydrological model, SWAT, with a statistical-machine
learning model, BRT, is implemented to study the dependence of water yield on multiple
environmental variables. A few key environmental variables including precipitation, maxi-
mum and minimum temperature, land cover, soil, and slope are selected because they have
previously been shown to contribute to the total water yield. Different basin (i.e., small,
intermediate and large) and temporal (i.e., daily, monthly, yearly) scales are employed for
understanding how water yield varies with scale. Based on the results obtained, the main
finding of this study can be summarized as follows:

– Among the six predictors considered, precipitation and land cover are the most important
factors while slope has the lowest importance. The relative importance of the remaining
predictors differs among temporal scales. Soil is the third most important contributor to
water yield at both the yearly and daily scales, while minimum and maximum temperature
surpass soil at the monthly scale due to their explicit seasonal character. The average
contributions obtained from the BRT models could serve as useful indicators for water
managers and policy makers in guiding water resource allocations for the YRB.

– In terms of the marginal effects of predictors, daily water yield responds positively to daily
precipitation from around 0 to 200 mm. Among different land cover types, artificial land
and cultivated land contribute the most to water yield. Daily water yield responds
positively to daily minimum temperature from −3 °C (around the snow melting point)
to around 20 °C, while maximum temperature shows gradient characteristics.

– The relationship between environmental factors and water yield is site- and scale-specific.
For the small basin scale, precipitation and land cover combined account for 94.4% and
68.8% of the total contribution to water yield at the yearly and daily scale, respectively. By
contrast, for the intermediate basin scale, the differences among the mean percent
contribution for precipitation, land cover, soil and slope are not significant at any of the
three temporal scales considered. For the large basin scale, all of the predictor variables
contribute to water yield at the daily scale, however, only precipitation and land cover
contribute to water yield at both the yearly and monthly scale. Therefore, we suggest that
caution should be taken when extrapolating water yield relationships across spatial and
temporal scales.
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– In contrast with results derived from small basins, the relationship between water yield
and its determinants obtained from the macroscale basin perspective may be particularly
beneficial for macroscopic risk prevention and high-level decision-making. More stable
and reliable results can be derived at the daily scale compared to the yearly. Previous
studies have mostly been focused on the yearly scale, we recommend that researchers
studying changes in water yield should prioritize conducting their studies at multiple
spatial and temporal scales, and include finer temporal scales.
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