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• Mobile monitoring of in-traffic black
carbon (BC)was conducted in Shanghai,
China.

• BC was lowest in the urban core and in-
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• Land use regression (LUR) model could
explain 68% of the BC spatial variability.

• The results implied the effect of traffic
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Black carbon (BC) has emerged as a major contributor to global climate change. Cities play an important role in
global BC emission. The present study investigated the spatial patternof in-traffic BC at a high spatial resolution in
Shanghai, the commercial and financial center inMainland China. The determinants including road network, so-
cial economic status and point-source pollutants, which may influence the BC spatial variability were also
discussed. From October to December 2016, mobile monitoring was conducted to assess the BC concentrations
on three sampling routes in Shanghai with a total length of 116 km. The results showed that the mean in-
traffic BC among three sampling routes was 10.77 ± 3.50 μg/m3. BC concentrations showed a significant spatial
heterogeneity. The highest BC concentrations were near industrial sources and that those high concentrations
were associated with either direct emissions from the industries, freight traffic, or both. With the widely distrib-
uted polluting enterprises and high emitting vehicles, the average BC in the low urbanization areas (12.80± 4.54
μg/m3)was 57% higher than that in the urban core (7.77±2.24 μg/m3). Furthermore, a landuse regression (LUR)
model based on mobile monitoring was developed to examine the determinants and its spatial variability of BC
measurements which corresponded to 17 predictor variables, e.g. road network, land use, meteorological condi-
tion etc., in 7 buffer distances (100 m to 10 km). The variables of meteorological, socio-economical and the dis-
tance to BC point-sources were selected as the independent variables. It was found that the established LUR
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model could explain a proportion (68%) of the variability of BC. LUR modeling from mobile measurements was
possible, but more work related to the effect of traffic regulation on BC could be helpful for informing best
model practice.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Black carbon (BC), which has been identified as the second largest
contributor to global warming after carbon dioxide (CO2) (IPCC, 2001,
2013), has important effects on climate change and human health
(Booth and Bellouin, 2015). It is produced both naturally and by anthro-
pogenic activities as a result of the incomplete combustion of fossil fuels,
biofuel, and biomass and aggregates to particles with an aerodynamic
diameter of 0.01–1.0 μm (Ramanathan and Carmichael, 2008). BC emis-
sions originate from a variety of sources, including industrial (10%), res-
idential (24%), mobile (24%), and open burning (42%) (Ni et al., 2014).
However, BC sources vary by region and time depending on life-style
and the types of fuel used. Meanwhile, as important components of
fine particulate matter (PM), BC can penetrate deeply into respiratory
systems and cause respiratory and cardiovascular diseases and mortal-
ity (Geng et al., 2013; Dabass et al., 2016). Furthermore, BC stays in
the atmosphere for only several days to weeks (i.e. 4–12 days) (Cape
et al., 2012). Controlling BC emissions could have immediate cooling ef-
fect on the earth's climate with co-benefit of air quality (Hansen et al.,
2000; Grieshop et al., 2009).

Precise measurements of atmospheric BC concentrations are indis-
pensable for understanding BC source origin and environments effects.
The earliest systematic measurements of BC started in London towards
the end of 19th century (Harrison, 2006). Since 1980s, BC has been in-
cluded in the observation program of Global Atmosphere Watch
(GAM) by World Meteorological Organization (WMO). Moreover, the
interest of policy makers in BC was aroused due to emerging evidence
on health effects and the impact of BC on global warming. More recent
records in related research have also been made in Antarctica (Hansen
et al., 2001), the United States (Vilcassim et al., 2014; Kirchstetter
et al., 2017), India (Safai et al., 2013; Begam et al., 2016), Switzerland
(Liu et al., 2010), South Africa (Moloi et al., 2002), and Italy (Invernizzi
et al., 2011). These researchesmainly focused on theBC radiative impact
and optical property (Menon et al., 2002; Dumka et al., 2013; Tan et al.,
2016), spatial and temporal characteristics (Qin and Xie, 2012; Safai
et al., 2013), source apportionment (Rajesh and Ramachandran, 2017)
and health effects (Janssen et al., 2011). In developed countries, motor-
ized transport (mainly diesel vehicles) are considered to be the most
important source of BC in cities, whereas in developing countries bio-
mass burning may be more remarkable (Highwood and Kinnersley,
2006; Kirchstetter et al., 2008).

Cities account for ~70% anthropogenic greenhouse-gas emissions
(Grimm et al., 2008; Nordbo et al., 2012) and have suffered from poor
air quality (Chan and Yao, 2008; Ding et al., 2016). Traffic exhaust emis-
sion is themain source of BC in urban areas, which has a significant im-
pact on atmospheric BC concentration (Kim et al., 2017; Winiger et al.,
2017). Understanding and quantifying the BC concentration in cities
could offer a powerful lens into urban systems and provide a compact
metric of urban sustainability (Latha and Badarinath, 2004; Zhang
et al., 2015). Extensive development of BCmeasurements in urban envi-
ronments of New York (Rattigan et al., 2013), Pune (Safai et al., 2013)
and Paris (Laborde et al., 2013) has been carryout recently (Rattigan
et al., 2013; Zhang et al., 2015). Most of these studies were based on
continuous observations in common-pointmeasurements, and the gen-
eral conclusions were that urban BC concentrations showed obvious
daily, weekly and seasonal variation, which was mainly influenced by
traffic condition (Targino et al., 2016), vehicle type (Kim et al., 2017)
and biomass burning (Safai et al., 2013). However, traditional stationary
monitoring stations were unable to acquire BC measurements at a high
spatial resolution. Due to the great heterogeneity of emission sources in
urban area, atmospheric BC concentration showed large differences in
space and time on a small scale (Van den Bossche et al., 2015). Recently,
mobile monitoring in the application of air pollutant measurement are
increasingly being accepted, especially for traffic-related pollutions, e.g.
BC, NO2, NO and PM (Hankey and Marshall, 2015a; Dekoninck et al.,
2015; Morales Betancourt et al., 2017). The land use regression (LUR)
model, an assessment tools in air pollution epidemiological researches,
evaluates the relationship between observed air pollution concentrations
and predictor variables (e.g. land use and traffic condition) in the multi-
variate regression model (Dons et al., 2013). LUR modeling with mobile
measurements is practicable reported by Hankey and Marshall (2015b).
However, only few studies used mobile measurements as a basis for
LUR modeling (Van den Bossche et al., 2018).

Shanghai, located in southeastern China, is one of the most densely
populated city in theworldwith significant air quality issues. Precise es-
timation for the spatial distribution of atmospheric in-traffic BC could
promote the developments of pollutant emission control and epidemi-
ologic study. In this study, the results of in-traffic BC made in Shanghai
are presented. The primary goals of present research were (1) to pro-
vide the spatial variability of in-traffic BC in urban environment with a
high spatial resolution, (2) to investigate how BC is dependent on
urban gradients, traffic conditions, meteorological parameters and
other sources, and (3) to develop LURmodels for predicting spatial pat-
terns in BC for Shanghai.
2. Methodology

2.1. Study area

Shanghai (30°40′–31°53′N, 120°52′–122°12′E, Fig. 1), located on the
eastern coast of China, is a global financial center and themost populous
city in the world. It has a population of 24.19 million in 2016, covers an
area of 6340 km2. The region has a humid subtropical climate and expe-
riences four distinct seasons, with an average temperature of 17.7 °C
and receives 1222.2 mm/year of precipitation during the past
15 years. As the financial and commercial center of mainland China,
its gross domestic product (GDP) reached CNY 2.74 trillion (USD
397.11 billion) in 2016, accounting for 3.68% of the national GDP
(Shanghai Municipal Statistics Bureau, 2017). The tertiary industry,
mainly including financial services, retail and real estate, provides
70.13% of the total output. Shanghai is well developed in transportation,
with the railway, road and inland waterway covering distance of 456,
13,195, and 2059 km, respectively. The number of vehicles increased
from 1.39 to 3.59 million during 2002–2016. Its rapid energy consump-
tion growth and high degree of urbanization has resulted in a remark-
able increase of air pollutant emissions.

Based on the officially issued document “The overall urban plan-
ning of Shanghai (Year 1999–2020)”, Shanghai is classified into
four different urbanization gradients according to the three ring
roads: the high-degree urbanization (H_urban, within the Inner
Ring Road), the moderate-degree urbanization (M_urban, outside
the Inner Ring Road and within the Middle Ring Road), the low-
degree urbanization (L_urban, outside the Middle Ring Road and
within the Outer Ring Road) and suburban (S_urban, outside the
Outer Ring Road) (Fig. 1).



Fig. 1.Map of the study area in Shanghai with three sampling routes. The Inner City mainly consists of Huangpu, Jing'an, Hongkou, Yangpu, Xuhui, Changning and Putuo district.
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2.2. Field mobile measurements of BC concentrations

The in-traffic BC concentrations in the urban districts along three
designated sampling routes was measured in this study using fossil
fuel based car asmobile sampling platform. These three sampling routes
all started at People's Square, and ended at Jiaxi Toll station (T1, north-
west), Dagang Toll station (T2, southwest) and Hunan Toll station (T3,
southeast), respectively (Figs. 1 and 2). These sampling routes passed
the city expressways within the Outer Ring Road and the highways
outside the Outer Ring Road, with different urbanization gradients,
road configurations and traffic densities. The sampling campaigns
were conducted during weekday mornings (09:00–11:00 am) on
rainless days in October and December 2016, with clear skies and
calm winds to avoid misrepresentation of typical urban air pollution
conditions. To minimize the influence of inconsistency in time and
external environment on BC sampling, round trip and triplicate mea-
suring were made for each sampling route. To be specific, there were
3 runs per route for the entire campaign. The detailed description for
each sampling runs was illustrated in Table 1, including the sampling
date, meteorological conditions and the corresponding route. To ob-
tain a representative and reliable picture of BC in urban area, three
round-trip measurements was carried out to minimize the uncer-
tainty caused by the discrepancy in time and abnormal conditions
(i.e. traffic jam and nearby traffic). In total, nine sampling runs
(~348 km of on-road measurements) were completed among the
sampling routes (~116 km).
A portable aethalometer (AE51, AethLabs, USA) was used to mea-
sure the BC concentrations in traffic environment. The
microaethalometer determined the BC concentrations by measuring
the attenuation of an 880 nm radiation beam transmitted through a fil-
ter strip. The instrument had its own sampling inlet with a Bev-A-line
tubing, equipped in the middle of the vehicle with 2 m above ground
level (Fig. 2). According the World Meteorological Organization
(WMO), all aerosol measurements should to be made at a relative hu-
midity below 40% for best accuracy (WMO/GAW, 2003). As relative hu-
midity was quite high in Shanghai, an aerosol stream dryer (Magee
Scientific) was used to remove water vapor from the sample stream
by diffusion through Nafion membrane during each sampling cam-
paign. Meanwhile, a GPS device (Juno SB, Trimble) recorded the spatial
coordinates of all sampling at the time of data collection, with the tem-
poral resolution the same as the BC analyzer (10 s). The average travel
speed during the sampling campaign was about 40–50 km/h (i.e.
11.1–13.8 m/s) and BC measurements recorded at 10 s time interval,
about 120mapart. The instrumentswere prepared in the laboratory be-
fore each sampling campaign, consist of changing of the AE51filter strip,
zero calibration, battery and memory checks.

The aethalometer frequently recorded spurious concentration
“spikes” when exposed to mild mechanical shock or vibration (Apte
et al., 2011). In addition, the measurements could be heavily impacted
by nearby traffic. Therefore, we recorded the standing time of traffic
lights or traffic jams during sampling, such as the location, starting
time and duration. When the distance between two adjacent BC



Fig. 2.Mobile sampling platform and three destinations of the three sampling routes. The three pictures on the right are Jiaxi Toll station, Dagang Toll station and Hunan Toll station in
sequence from top to bottom.
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sampling points was b55m (i.e. 20 km/h, the average speed during traf-
fic jams in expressways), the secondBC recordwas regarded as “spikes”.
After spike screening, the valid BC measurements were 88.4% of the
total observations with 10 s interval. Moreover, to reduce the impact
of negative value on BC exposure concentrations, the Optimized
Noise-reduction Averaging (ONA) algorithm described in Hagler et al.
(2011) and Cheng and Lin (2013) was adopted. K-N corrections devel-
oped by Kirchstetter and Novakov (2007) were applied to BC exposure
measurements to correct for underestimations of BC concentrations
with increasing aethalometer filter loading (Kirchstetter and Novakov,
Table 1
Descriptions of the meteorological conditions during the sampling campaigns.

Date Transect Air temperature (°C) Rel

Oct. 18 T2 21.58
Nov. 4 T1 15.51
Nov. 30 T3 11.13
Dec. 2 T2 9.06
Dec. 6 T3 7.94
Dec. 7 T1 10.06
Dec. 8 T3 10.90
Dec. 9 T2 10.55
Dec. 15 T1 3.86
2007; Hagler et al., 2011). The following equations were used to com-
pensate the filter loading effect of BC concentrations:

BC ¼ BC0

0:88Trþ 0:12ð Þ ð1Þ

Tr ¼ exp −ATN=100ð Þ ð2Þ

where BCwas the corrected BC, BC0was the observation data, Tr was the
aethalometer filter transmission, which was calculated from the
ative humidity (%) Wind speed (m/s) Wind direction

79.14 1.74 NE
77.15 1.33 NS
75.81 1.47 NW
75.83 1.07 NE
68.58 1.15 NE
71.58 0.96 S
71.10 1.31 S
69.52 2.11 N
57.03 2.24 NW



Fig. 3. The comparison between original BC measurements and corrections treated by ONA and K-N was illustrated in this figure (take T3 monitored on December 6 for example).
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measurements of transmitted light intensity (ATN). The comparison be-
tween original BCmeasurements and corrections treated byONA andK-
N was illustrated in Fig. 3 (take T3 monitored on December 6 for
example).
2.3. Spatial and socioeconomic variables

To investigate the potential effects of natural condition and human
activities on the spatial distribution of in-traffic BC concentrations, 17
variables in 7 buffer distances (100 m, 500 m, 1 km, 2.5 km, 5 km,
7 km and 10 km) were tested for their associations to the observed BC
concentrations in traffic environment over Shanghai. The variables
were grouped into six categories: (1) road network (length of major
and minor roads and distance to major and minor roads); (2) land use
(areas of cropland, woodland, grassland, waters and built-up land);
(3) meteorology (wind speed, relative humidity, temperature and at-
mospheric boundary layer height); (4) socio-economy (population
density and gross primary production); (5) physical geography (eleva-
tion); and (6) point-source pollutant (distance to BC point-source pol-
lutant) (Table 2).
Table 2
Descriptions of potential predictor variables on spatial variation of BC exposure concentration.

Categories Variables/units Description

Road Len_MajorRoad (m) Total length (LEN) of major and minor road
(DIST) to major and minor road in 7 bufferDIST_MajorRoad (m)

Len_MinorRoad (m)
DIST_MinorRoad (m)

Land use Area_Cropland (m2) Total area of cropland, woodland, grassland
land in 7 buffer distancesArea_Woodland (m2)

Area_Grassland (m2)
Area_Waters (m2)
Area_Build-upland (m2)

Meteorology WS (m/s) The average value of wind speed (WS), Rel
Temperature (T) and atmospheric boundar
in 7 buffer distances

RH (%)
T (°C)
BLH (m)

Socio-economy POP (person) The average value of population (POP) and
product (GDP) in 7 buffer distances

GDP (RMB ten thousand
yuan)

Physical
geography

DEM (m) Average of elevation (DEM) in 7 buffer dist

Point-source
pollutant

DIST_PSP (m) Average distance (DIST) to BC point-source
in 7 buffer distances
As it was very difficult to acquire the vehicle population (i.e. high
emitting vehicles, relative clean vehicles), the road variables were
used to reflect the traffic information. The road data for the study area
was obtained from the OpenStreetMap (Mooney et al., 2016), including
urban expressways, highways, national roads, provincial roads, county
roads and rural roads. Considering the traffic flow/intensity, we divided
the roads into two types, i.e. major road (urban expressways and high-
ways) and minor road (other four types of roads). The land use/cover
data with a spatial resolution of 30 m were provided by the National
Geomatics Centre of China (NGCC). Pixel-object-knowledge based ap-
proach was implemented on images from Landsat Thematic Mapper
(TM), Enhanced Thematic Mapper plus (ETM+), and the HJ-1 (multi-
spectral images of Chinese Environmental Disaster Alleviation Satellite),
with a high accuracy of over 80% (Chen et al., 2015). As themeteorolog-
ical conditionswith themobile sampling platformwere not recorded in
this study, the hourly weather variables (wind speed-WS, relative
humidity-RH, and temperature-T) were obtained from 11 meteorologi-
cal stations in Shanghai, provided by the National Climate Center of the
China Meteorological Administration (CMA). Inverse Distance
Weighted (IDW) interpolation algorithm provided in Arcgis 10.3 was
used to create the spatial distribution map of each weather variables.
Data sources

, average distance
distances

Shanghai Key Lab for Urban Ecological Processes and
Eco-Restoration

, waters and built-up Globeland30-2010 (http://www.globalland-cover.com)

ative Humidity (RH),
y layer height (BLH)

Chinese Meteorological Administration (http://data.cma.
cn/data/)

The European Centre for Medium-Range Weather Forecasts
(ECMWF) (http://apps.ecmwf.
int/datasets/data/interim-full-daily/levtype=sfc/)

gross domestic WorldPop datasets (http://www.worldpop.org.
uk/data/get_data/)
Global Change Research Data Publishing & Repository
http://geodoi.ac.cn/WebCn/CategoryList.aspx?categoryID=9

ances SRTM 90 m Digital Elevation Data (http://srtm.csi.cgiar.org/)

pollutant (PSP) BC point-source distribution in Shanghai supported by
Pudong New Area Environmental Monitoring Station,
Shanghai

http://www.globalland-cover.com
http://data.cma.cn/data/
http://data.cma.cn/data/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://www.worldpop.org.uk/data/get_data/
http://www.worldpop.org.uk/data/get_data/
http://geodoi.ac.cn/WebCn/CategoryList.aspx?categoryID=9
http://srtm.csi.cgiar.org/


56 M. Liu et al. / Science of the Total Environment 658 (2019) 51–61
Afterwards, a summarymeasure for the 2-hour sampling period forWS,
RH and T was obtained. Weather and air quality are also related to dy-
namic variations of planetary boundary layer processes (Vinogradova
et al., 2007; Leventidou et al., 2013). In this study, the daytime BLH dur-
ing the study period was downloaded from the European Centre for
Medium-Range Weather Forecasts, which was available at a 0.125° ×
0.125° latitude-longitude resolution.

In addition, the population data in Shanghai was obtained from
WorldPop datasets, where population numbers per 100 × 100 m grid
square are estimated. Meanwhile, the gridded GDP map was provided
by Global Change Research Data Publishing & Repository. The elevation
for the study area was obtained from The NASA Shuttle Radar Topo-
graphic Mission (SRTM) with a spatial resolution of 90 m × 90 m. The
distribution and emissions of polluting enterprises was provided by
the Shanghai Environmental Protection Bureau.

To further explore the relationship between spatial patterns of BC
concentrations and potential influencing factors, we divided three sam-
pling routes into 116 segments (1 km each). BC measurements along
1 km segments (~8 data points) were aggregated to ensure that aggre-
gation location could provide sufficient sample sizes to estimated con-
centrations. As the distance between aggregation locations decreases,
the number of measurements per location decreases. After that, we cre-
ated the line buffer around each entire segment and the statistical aver-
age values of predictor variables in different buffer sizes around each
segment were calculated.

To avoid the dimension problem caused by different types of data in
subsequent analysis, all potential predictor variables were standardized
using the Z-Scoremethod. The Z-scores were computed for all the inde-
pendent variables:

z ¼ x−μ
σ

ð3Þ

where z is standardized variate, also called the z-score, following a nor-
mal distribution with zero mean and one variance. μ and σ indicate the
mean and variance of x. Seventeen variables in 7 buffer, in total 119 (17
× 7) spatial predictor variables, were all considered in LUR model
Fig. 4. Spatial distribution of the median BC (MBC) exposure concen
development. ArcGIS and SPSS were used to evaluate, modify, extract,
and aggregate potential predictor variables.

2.4. BC modeling with land use regression model

Land use regression (LUR) is a statistical technique used to deter-
mine exposure to air pollutants in epidemiological studies (Dons et al.,
2013). It is a cost-effective tool for predicting spatial variability in ambi-
ent air pollutant concentrations with high resolution (Hankey and
Marshall, 2015b). Traditionally, in a LURmodel, air pollutantsmeasured
at 20–100 monitoring stations was used as the dependent variable en-
tered in amultiple linear regression analysiswith several geospatial var-
iables (e.g. traffic, land use or population density) as independent
variables (Dons et al., 2013; Montagne et al., 2015). LUR models have
been developed for PM2.5, NO2, and BC in many cities (Saraswat et al.,
2013; Nunen et al., 2017). However, LURmodel developed by pollutant
concentrations based on mobile measurements is likely to be relatively
limited (Hankey and Marshall, 2015a, 2015b; Van den Bossche et al.,
2018). On condition of the limited funds, mobile monitoring not only
expands spatial coverage for data acquisition, but also enlarges the sam-
ple size for LUR model (Van den Bossche et al., 2015).

In this study, we developed LUR models using mobile BC measure-
ments in traffic environment. The natural logarithm of the median BC
concentration (lnMBC) on per segment (1 km) was used as the depen-
dent variable in a multiple linear regression analysis (Hankey and
Marshall, 2015a), with a total of 116 data records. The main procedures
for developing LURmodel in this study included: (1) conducting bivariate
analysis to find the significant independent variables that explained the
dependent variable of lnMBC. Variables kept had to be significant at the
95% level (pb 0.05); (2) selecting the variablewith the highest correlation
coefficient in 7 buffer distances; (3) excluding the variables of high collin-
earitywith other variables (variance inflation factor [VIF] N3); and (4) de-
veloping the stepwise regression model with the selected independent
variables. All these processes were completed in SPSS.

The final models were evaluated with the leave-one-out cross vali-
dationmethod (LOOCV). To explore the global and local patterns of spa-
tial autocorrelation for the LUR model to BC, the model residuals were
analyzed by calculatingMoran's I statistic and the Anselin local Maran's
trations at 1 km segment of three sampling routes in Shanghai.
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Fig. 5. Boxplot of median BC concentrations for three sampling routes. Black horizontal
bars correspond to the lower and upper quartile values. The red lines and blue dot
showed the median and means, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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I (LISA). In addition, wemapped BC concentrations at a 100m of spatial
resolution by rendering the regression models in ArcGIS.

3. Results and discussion

3.1. Spatial variations of BC concentrations across urbanization gradients

The median BC (MBC) concentration per segment (1 km) was
showed in Fig. 4. The observed MBC concentrations in traffic environ-
ment exhibited substantial spatial heterogeneity, with the lowest
value in the urban core and the highest in the northwest and southeast
parts. The MBC of all three sampling routes in traffic during
09:00–11:00 am varied from 5.11 μg/m3 to 21.88 μg/m3, with an aver-
age value of 10.77 ± 3.50 μg/m3 (Fig. 5). Among three sampling routes,
the average of MBC in T1 (13.05 ± 2.54 μg/m3) was obviously higher
than those of T2 (8.23 ± 1.74 μg/m3) and T3 (11.26 ± 3.96 μg/m3).
The areas with high traffic intensities, particularly on the highways,
showed the high MBC concentrations (Fig. 4), e.g. the Hujia Highway
and the Shenhai Highway in T1 (12.3 ± 0.8 μg/m3), the Hulu Highway
in T3 (11.0 ± 1.6 μg/m3) and the Hukun Highway in T2 (8.7 ± 1.4 μg/
m3). In addition to the MBC on highway, the high values appeared in
T1 and T3 were around the Outer ring road.

Compared to other studies in traffic environments in Shanghai, the
mean of MBC concentrations observed in this study was higher than
the result in Li et al. (2015) (8.62 ± 4.13 μg/m3), but lower than that
Fig. 6.MBC exposure concentrations, population density and BC e
reported by Lei et al. (2017) (11.8 ± 9.8 μg/m3) on three ring roads
withmobile monitoring during October 2015 in Shanghai. This discrep-
ancy could be partly attribute to the different sampling routes in these
three studies. In general, the in-traffic BC of Shanghai was relatively
higher than that observed in cities of other countries. For example, a
study in Londrina (Brazil) based on bicycle sampling found that the av-
erage BC concentration was 6.4 ± 20.0 μg/m3 (Targino et al., 2016). Ac-
cording to Hankey and Marshall (2015a, 2015b), the measurements of
on-bicycle exposure to BC, between August 14 and October 16, 2012
in Minneapolis, were 2.5 ± 1.4 μg/m3 in the morning and 0.7 ± 1.6
μg/m3 in the afternoon. Although themobile platforms and sampling in-
struments were not consistent in different cities, the high BC measure-
ments in Shanghai could partly reflect a strong pressure of air
pollution and human health compared to the cities in other countries
around the world.

Based on the classification of urbanization levels in Shanghai, the av-
erage MBC concentrations of H_urban, M_urban, L_urban and S_urban
in Shanghai were 7.77 ± 2.24, 9.51 ± 2.76, 12.80 ± 4.54 and 11.77 ±
2.94 μg/m3, respectively (Fig. 6). Correspondingly, the population den-
sity in the H_urban areas of Shanghai was 25,838 person/km2, which
was two folds and 13 folds than that in the L_urban areas (13,225.85
person/km2) and S_urban areas (1880.26 person/km2). In general, cities
density is strongly correlated with concentrations of greenhouse gases,
especially for CO2 and CH4; however, it does not appear to be so in this
study. There was a clear rise of BC concentrations in L_urban areas com-
pared to that in H_urban and M_urban areas, with the exception that
MBC in S_urban was slightly higher than that in M_urban.

Further analysis indicated that the variation of BC concentrations
levels among urbanization gradients in Shanghai were consistent with
the BC emissions that omitted from industrial and power sectors. Ac-
cording to the information provided from Shanghai Environmental Pro-
tection Bureau in 2015, N95% of polluting enterprises were located
outside the Outer Ring road. The BC emissions from these polluting en-
terprises were about four-fold in L_Urban (195.33 kg/km2) than that in
M_urban (49.14 kg/km2). These industrial sources lead to the highest
BC concentrations appeared in the low density areas. In the suburban
areas outside the outer ring, due to the reduction of BC industrial source
emissions, the BC concentration has also declined. We could conclude
that the direct emissions from the industries could be an important BC
sources in Shanghai.

On the other hand, the container cars and diesel-fueled heavy trucks
were banned on the Inner and Middle Ring roads in Shanghai since Oc-
tober 2016. This stop-and-go traffic may lead to larger BC emissions in
low-urban and suburban areas compared to that in the high andmedian
density areaswithinMiddle Ring road.We could inferred that it may be
the combustion conditions of the vehicles and not the volume that have
missions from point sources in different urbanization levels.
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significant effect on the regional BC concentrations in Shanghai. Differ-
ent vehicle population (i.e. high emitting vehicles, relative clean vehi-
cles) could contribute to the different BC concentration at different
area. Targino et al. (2016) pointed out that older buses and diesel-
powered trucksmay be themain driver behind the high pollution levels
in the city's inner core. Wang et al. (2011) also found that 5% of diesel
trucks were responsible for 50% of total BC emissions, and 20% of the
trucks were responsible for over 70% of BC emissions in Beijing, China.
A number of studies also found that diesel truck emission regulations,
including combustion conditions of the engines and malfunctioning
emission control systems could lead to the declining BC concentrations
(Bahadur et al., 2011; Murphy et al., 2011). However, the high flow of
high-pollution trucks combined with the straw burning activities in
rural areas could result in higher levels of MBC concentrations.

In summary, the highest BC concentrations in Shanghai were near
industrial sources in the low density areas and that those high concen-
trations appeared in L_urban and S_urban were associated with either
direct emissions from the industries, associated freight traffic, or both.
These reasons for the BC variations among different urban gradients
were in accordance with the findings in Kirchstetter et al. (2017), in
which large reductions in urban BC concentrations was found between
1965 and 2000 across U.S., contrast increasing energy use and CO2 emis-
sions. The substituting natural gas and electricity for heavy fuel oil and
decreasing emissions from diesel vehicles contributed to the significant
decline of BC concentrations.

3.2. Association of BC concentrations and potential influencing factors

The Pearson correlation coefficient (r) betweenMBC concentrations
and independent variables was calculated within a certain spatial scale
of different buffer distances. The results indicated that MBC concentra-
tions were significantly correlated with 73 of the 119 variables under
7 buffer distances (Fig. 7). The result showed that the spatial distribu-
tion of MBC was more influenced by variables of meteorology, socio-
economy, physical geography and point-source pollutants than that of
road and land use. In terms of absolute value, the correlation coefficients
(r) between MBC concentrations and WS, RH and T were mostly above
0.45, especially the largest value (r = 0.75) occurred in WS.100 m (the
average wind speed in 100 m buffer distance). For road and land use
variables, their influences on MBC mainly occurred within the range of
Buffer 
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Fig. 7. Correlation coefficients (r) between MBC concentration
between 100m and 2.5 km, while GDP and POP showed stronger corre-
lations with MBC in larger buffer distance, particularly GDP.5 km (the
average GDP in 5 kmbuffer distance). The remainingDEMandDIST_PSP
both had significant effects (p b 0.01) onMBC in all buffer distances, and
r of DEM was higher than DIST_ PSP.

It was worth noting that correlation coefficients (r) between some
variables and MBC appeared as unusual positive and negative signs,
such as the length of roads (negative), the distance to roads (positive),
the areas of built-up land (negative), wind speed (positive), boundary
layer height (positive) and populations (negative). It couldn't assert
that these relationships were wrong as mobile monitoring, different
from station measurements, was inescapability affected by the ever-
changing traffic environment (Dons et al., 2013), including vehicle pop-
ulations and near-surface meteorological conditions. As different vehi-
cle population contributes to the BC concentration at different area,
we may infer that, the population of high emitting vehicles was larger
in the areas with high road network density than that areas with low
road network density in Shanghai. Nevertheless, except for some vari-
ables which were not sure about the positive or negative relationship
(e.g. DEM and temperature), remaining variables showed popular
signs, for example the higher GDP or the less distances to BC point
sources will result in higher MBC concentrations.

3.3. Evaluation and prediction of BC concentrations with LUR model

By combining MBC observations and the possible independent vari-
ables, we were able to develop a predictive LUR models for the spatial
distribution of BC in traffic environment in Shanghai. Specifically, four
variables were selected to describe the predicted spatial distribution
of BC exposure in LUR modeling in this study, which included
WS.100m,RH.100m, GDP.5 kmandDIST_PSP.1 km(Table 3). Itwas im-
portant to note that the road variables failed to the variable screening.
This result illustrated that the effects of road distribution and land use
on BC concentrations were relatively small in LUR modeling compared
to meteorological variables.

For themodel performance, the established LURmodel in this study
could explain a proportion (68%) of the variability in measured BC con-
centration, with an adjusted R2 of 0.67 and an LOOCV R2 of 66%. Com-
pared to LUR models developed in other study areas, the result of our
study might show a higher adjusted R2. For example, Montagne et al.
Distances
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Table 3
LUR model of BC (μg/m3), including selected variables and results of LOOCV.

Independent
variables

Regression
coefficients

Model performance LOOCV

Intercept 2.32 R2 = 0.68
Adjusted R2 = 0.67

RMSE = 0.19

R2 = 0.66
RMSE = 0.19WS.100 m 0.10

RH.100 m 0.15
GDP.5 km 0.09
DIST_PSP.1 km −0.04
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(2015) developed LUR models for BC, and the adjusted R2 was
0.35–0.40. Hankey and Marshall (2015a, 2015b) also established LUR
model with mobile BC observations in Minneapolis, and their R2 was
0.35. In addition, R2 of LUR model for BC concentrations in Kerckhoffs
et al. (2016) and Lee et al. (2017)were 0.12–0.30 and 0.50, respectively.
This possible explanation was that the meteorological variables were
considered in modeling in our study. We tried to exclude all meteoro-
logical variables in LUR modeling and found that the model would
lose explanatory power, with R2 decreased to 0.57. It might indicate
that meteorology could cause a significant improvement in LURmodels
(Dons et al., 2013).While the adjusted R2 of LURmodels for BC reported
by Saraswat et al. (2013) were 0.69–0.86 and higher than our results, it
maybe because that Saraswat et al. (2013) took BC concentration of a
background site into consideration during their LUR modeling. In
Minet et al. (2017), they did not contain the fixed monitoring stations
and thought that even the ‘background’ station of the air quality surveil-
lance network has lately seen a large land-use development around it.
For these reasons, we think LUR modeling for air pollution could also
be feasible without the background BC values in this study.

It was important to note that road variableswere not selected as inde-
pendent variables and no “traffic” factor being accounted in the LUR
model application. It wasmainly due to the fact that the actual traffic con-
ditions could not be reflected by road variables. Because of the vehicle ban
regulation, the same road length and density may have different vehicle
populations. In addition, due to the deficiency of traffic factors during
LUR modeling, the simulation performance of LUR was limited. LUR
modeling from mobile BC measurements was possible, but more work
could usefully inform best practice, especially with the addition of traffic
variables related to the actual traffic conditions and the different vehicle
population (i.e. high emitting vehicles, relative clean vehicles).

With the established LUR model, we could map the BC in the urban
traffic environment at a high spatial resolution (100 m) (Fig. 8). Due to
the attributions of meteorological variables, i.e. WS.100 m and
RH.100m, the spatial distribution of exposure to BC in Shanghai showed
a smooth and spatial continuity. The regionwith high BC concentrations
(N10.88 μg/m3) was mainly distributed in the northwestern and south-
east regions, while the areas within the inner city appeared obviously
lower exposure to BC in traffic environment. Besides, suburban districts
in the southwest (e.g. Minhang, Songjiang) also performed a lower con-
centration level of BC exposure. The spatial distribution characteristic of
atmospheric BC in traffic environment in Shanghai was also affected by
the Shanghai traffic restriction policy. The northwestern and southeast
areas of Shanghaiwere themain hub regionswhere heavy-polluting ve-
hicles from other provinces entered Shanghai, where the container cars
and diesel-fueled heavy trucks were the most representatives.

In the end, we tested the LUR model residuals using Moran's I to as-
sess model performance. Moran's I of the residuals for the LUR model
was 0.75, indicating a high spatial autocorrelation. The calculated result
of the Moran's I in this study was close to those of Hankey andMarshall
(2015a, 2015b), which ranged from 0.53–0.61 at 100 m search radius.
To further explore the local spatial autocorrelation, we used the LISA
analysis and mapped clusters of high values (model underestimates)
and clusters of low values (model overestimates), shown in Fig. 8.
Most residuals were not classified as clusters (model underestimates
or overestimates) or outliers (including the two situations of low
value near cluster of high values and high value near cluster of low
values). The proportions of model underestimates and overestimates
were 6.90% and 3.45%, respectively. Specifically, the model tended to
underestimate BC concentrations in areaswith high levels of congestion
occurred (Hankey and Marshall, 2015a, 2015b).

3.4. Uncertainty in BC modeling with LUR model

The applicability of the LUR models in BC modeling is restricted by
the characteristics of the input data (Van den Bossche et al., 2018).
The most controversial aspect of mobile monitoring was that it cannot
simultaneously consider the time synchronization when acquiring the
observations at a high spatial resolution. Atmospheric pollutants are
not only highly heterogeneous at spatially but also at small time scales
(Van den Bossche et al., 2015). In our study, we used a round-trip sam-
plingmethod for each route and repeated themonitoring several times,
it may still not completely eliminate the time difference of observations.
Due to the influences from traffic environment, such as traffic density
and conditions, the observed BC concentrations in this study were inev-
itable suffered from uncertainty. To be specific, in this study, the total
difference between inbound and outbound trip was 0.26 μg/m3, with a
relative deviation of 2.4%. For the repeatability of the three round-trip
measurement, the relative deviationwas 5.2%–7.6%. The samplingmea-
surement with more repetition would helpful for making results more
objective and decrease the uncertainty in LUR modeling.

The quality of the potential predictor variables and their representa-
tiveness would directly influence the model performance. In our study,
traffic roads were obtained from open sources which may differ from
the actual road distribution in Shanghai. In addition, road variables
were not selected as independent variables in this study, which could
limit the model performance. If the variables reflecting the population
of high emitting vehicles could be considered in the LUR model, the
model performance would be improved. Meanwhile, a rough land use
classificationmight ignore the effect of a specific land use on BC concen-
tration. In the studies illustrated in Hankey and Marshall (2015a,
2015b), the type of open space land and the land type of retail affect
the spatial distribution of BC concentration.

The basic principle of the LUR model was based on the multiple lin-
ear regression analysis between the BC concentration and the influenc-
ing factors. However, atmospheric pollutants, including BC, were
affected by many factors. Although there was no significant linear rela-
tionship between BC and environmental variables, there may be a cer-
tain non-linear relationship. He and Lin (2017) found that there was a
linear PM2.5 andwind speed, but therewas a non-linear relationship be-
tween CO and O3 and meteorological variables (i.e. precipitation, hu-
midity). Therefore, it was possible to eliminate some non-linear
related variables with LURmodeling, thereby increased the uncertainty
of themodel results. However, it cannot be denied thatmobilemonitor-
ing and LURmodel offered an alternative way in favor of obtaining data
at a high spatial resolution and mapping the spatial distribution of air
pollutant.

4. Conclusions

In this study, mobile measurements of urban BC exposure in traffic
from three sampling routes covering 116 km were conducted during
9:00–11:00 am in Shanghai, the commercial and financial center in
mainland China. The high spatial resolution of BC samplings could pro-
vide the opportunity to understand the urban BC in traffic environment
and investigate its determinants. The average daytime (9:00–11:00 am)
BC concentrations along these three transects in Shanghai was 10.77 ±
3.50 μg/m3 in October and December 2016. The high BC value presented
serious public health issues to the local population. BC concentrations in
Shanghai showed a significant spatial heterogeneity, with the highest
value appearing in the southeast followed by northwest and the lowest
concentration appearing in the southwest region. It was worth nothing
that the average BC in the low-degree urbanization areas (L_urban)



Fig. 8. The spatial variation of BC concentrations in Shanghai with LUR model.
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were 57% higher (5.03 μg/m3) than that in urban core (H_urban), which
exhibited awell-shaped BC hole. This result implied that the trend of in-
traffic BC in urban areas of Shanghai was likely to depend more on the
traffic policy, such as the permission of diesel-fueled vehicles, and the
distribution of high smoke and dust industrial emissions. Overall, an
established LUR model in this study with seven geographic predictor
variables could explain a proportion (68%) of the variability inmeasured
BC concentration.

This study mainly focused on the spatial distribution and its determi-
nants of in-traffic BC concentrations in urban areas. The BCmeasurements
obtained frommobile sampling campaign were assumed to be represen-
tative at the regional level. As the high spatiotemporal heterogeneity of BC
concentrations in urban area, the BCmeasurementswithmobile platform
were inevitable suffered from uncertainty, which also lead to the uncer-
tainty in LUR modeling. The quantification of different BC sources on
reginal BC concentrations in urban area still need further clarification, es-
pecially the actual effect of traffic regulation policy. Additional studies on
urban BC concentrations in different parts of the city with different sam-
pling methods and long-term measuring are also needed.
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