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A B S T R A C T

An accurate modeling of urban CO2 emissions is important for understanding the dynamics of carbon cycle and
for designing low-carbon policies. We develop an improved nightlight-based method to model urban CO2

emissions and investigate their spatiotemporal patterns. Differing from the previous methods, in processing the
pre-modeling data, we bring forward the existing CO2 inventories from national and provincial levels to city
level, and correct the saturation and blooming problems of nightlight. In modeling the correlation between
nightlight and statistically accounted CO2 emissions, we highlight a panel-data regression analysis that considers
the spatiotemporal heterogeneity across cities and over time simultaneously. Eleven cities in Yangtze River Delta
of China were selected for a case study testing our method. The internal and external validations have proven the
predominance of our proposed method for capturing the nightlight-CO2 correlation, and for describing the
spatial distribution and heterogeneity of urban CO2 emissions.

1. Introduction

Cities are the main contributor to climate change, since they are
responsible for more than 70% of the global fossil-fuel-induced carbon
emissions, while occupying less than 2% of the earth's land area
(Gurney et al., 2015). Their impacts are expected to grow due to con-
tinuous urbanization. China has been urbanizing at an unprecedented
speed and has become the largest carbon emitter in the world. The
proportion of residences qualifying as urban increased from 18% in
1978 to 55% in 2013. The number of prefecture-level cities with po-
pulation sizes over one million also expanded to 133 (NBS, 2015).
Consequently, some Chinese mega cities, such as Shanghai, emitted
more greenhouse gases than several countries did, such as Thailand and
the Netherlands (World Bank, 2010). Therefore, the reduction in carbon
emissions at a city scale becomes increasingly important and urgent.

A long-term monitoring of urban CO2 emissions is critical for un-
derstanding the dynamic patterns and drivers of the carbon cycle and
for helping policymakers to design effective policies to mitigate climate

change. Based on Intergovernmental Panel on Climate Change (IPCC)
guidelines for national greenhouse gas accounting, a growing number
of scholars and research institutes have developed methodologies and
tools for quantifying carbon emissions at a city scale, including the
International Local Government Greenhouse Gas Emission Analysis
Protocol (ICLEI, 2009), the GHG Protocol (WBCSD and WRI, 2004), the
Greenhouse Gas Regional Inventory Protocol (Carney et al., 2009), and
the Sustainable Energy Action Plan (SEAP) (CoM, 2010). However,
despite recent advancements in research aimed at estimating the dy-
namics of urban carbon emissions, great challenges remain that are
largely due to the lack of comprehensive, consistent and comparable
statistical data on energy consumption and human activities on a city
scale. Furthermore, all of the accounting methods based on energy
statistics all treat the city as a homogenous unit but represent the dy-
namics of the urbanization processes, such as the rapid sprawl of urban
built-up areas, poorly (Albert et al., 2015; Edward and Matthew, 2010).

As means of addressing the abovementioned challenges, nighttime
light (NTL) has been widely used as a useful proxy for economic output
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(Chen and Nordhaus, 2011), urban extent extraction (Xie and Weng,
2017), population estimation (Sutton et al., 2001), electricity con-
sumption (Cao et al., 2014), and in-use metal stocks (Liang et al., 2014)
due to its strong correlation with human activities and its availability at
a high spatial resolution for most of the world, beginning in 1992.
Recently, this proxy has also been applied to estimate urban CO2

emissions at different time and space scales. For example, Oda and
Maksyutov (2011) downscaled national CO2 emissions to global
1 km×1 km grids using nightlight as a proxy and separately allocated
the point source emissions based on the global power plant database.
Asefi-Najafabady et al. (2014) built upon a previously developed fossil
fuel data assimilation system (FFDAS) and expanded the estimated 1 km
gridded CO2 emissions from a single year to multi-years from 1997 to
2010 by combining with nightlight data, gridded population, and
global power plant database. Su et al. (2014) analyzed the linear cor-
relation between CO2 emissions and NTL in provinces and a limited
number of cities of China based on a pool-data regression analysis
without considering the differences across regions and over time, and
predicted the carbon emissions in cities without direct energy data.
Meng et al. (2014) and Shi et al. (2016) developed a panel-data re-
gression model that took into account the city-specific coefficient in
capturing the relationships between province-level energy-related CO2

emissions in China with NTL and downscaled the emissions to an urban
or 1 km scale. These studies have reached a consensus that the NTL can
be used as a valid and useful proxy for downscaling statistically ac-
counted CO2 emissions to scale of interest (for example, pixel, urban,
city, and urban agglomeration). And one can obtain estimates that are
much more geographically consistent than energy consumption statis-
tics through bypassing the reliance on statistical energy consumption
data.

However, at least three aspects can be substantially improved. First,
a suitable carbon accounting method needs to be selected that is
compatible with the available energy statistics. The IPCC guidelines are
based on detailed energy consumption data by sector and fuel type and
are the most preferred and commonly used approach in the existing
literature (Oda and Maksyutov, 2011; Meng et al., 2014; Su et al., 2014;
Shi et al., 2016). However, detailed energy data are not always avail-
able for cities. Taking China as an example, the energy balance table is
only available for the whole country, provinces and a limited number of
cities, such as Shanghai, Guangzhou, and Shenzhen. In most cities, only
certain fragmented information about energy consumption in certain
specific sectors (e.g., industrial enterprises and households) can be ac-
cessed through the city's statistical yearbook. Thus, the scope and
methodological complexity should be taken into account in choosing an
appropriate accounting method so a more exact correlation between
carbon emissions and NTL can be derived. Second, the intrinsic sa-
turation problem of NTL especially in the city centers needs to be ad-
dressed; otherwise it may constrain NTL's further application and esti-
mation accuracy. Internationally, there are a great number of studies
focusing on saturation correction. Various methods and indices have
been developed generally by combining original NTL with other data
sources (such as Normalized Difference Vegetation Index (NDVI), and
population density) to increase the variation of NTL in urban cores
(Meng et al., 2014; Ma et al., 2017). However, potential improvements
still exist in relieving the saturation issue (Bennett and Smith, 2017).
Third, the spatiotemporal heterogeneity across cities and over time
must be considered. The socioeconomic and geographical conditions
usually vary in different cities and at different development stages, even
for the same city. These differences may result in significant disparities
in both the quantity and change patterns of carbon emissions.

This study aims to address the abovementioned deficiencies so as to
better estimate urban CO2 emissions. In processing the pre-modeling
data, we bring forward the existing CO2 inventories from national and
provincial levels to city level, which to some extent breaks through the
strong requirement on detailed statistical energy data, and raise the
accuracy of pixel-level CO2 estimation as it is downscaled from city

level rather than from country and province. Moreover, we correct the
saturation and blooming problems of NTL by integrating time-series
NDVI and population density data, which reduces the estimation error
in the urban core and rural areas. In modeling the correlation between
NTL and statistically accounted CO2 emissions, we propose a panel-data
regression model, which considers the spatiotemporal heterogeneities
across cities and over time simultaneously. Eleven cities in the Yangtze
River Delta (YRD) of China were selected as a case to test the method.
Based on the same dataset, our model was internally validated through
a 2-fold cross-validation process and compared with a pool-data re-
gression model and a panel-data regression model that only considers
city-specific coefficient. In addition, our model was also externally
validated with other studies both at city and pixel level. By doing so, the
predominance of our improved method could be seen clearly. Finally,
the uncertainties, limitations and potential improvements have also
been discussed.

2. Study area and data

2.1. Study area

YRD is China's largest urban cluster, wherein 11 cities were selected
for case studies (Fig. 1). There are three reasons for their selection. The
first is the important role that the YRD plays in socioeconomic devel-
opment and carbon emissions. It is one of the most rapidly urbanizing
and wealthiest regions in China, with the country's largest urban
cluster, covering 2% of the country's territory but contributing 20% and
12% to the total GDP and CO2 emissions, respectively, in 2005 (Cai and
Xie, 2007). The second reason is the relatively lower disparity in soci-
etal and natural conditions (e.g., culture, lifestyle, income level and
climate) among the cities in the YRD compared to broader areas across
China. Choosing a study area with less regional disparity may reduce
the disturbance from spatial heterogeneity in correlation analyses be-
tween carbon and NTL. The third reason was that the 11 case study
cities reflect some generalities of economic structure and transport
development of Chinese cities. As shown in Table S1 in the Supple-
mentary Material, some cities in the YRD (for example, Huzhou and
Suzhou) have developed the secondary industry as their leading in-
dustry, which is consistent with most cities in middle reaches of the
Yellow River, the middle reaches of the Yangtze River, and in the
northeastern regions. However, there are also cities in the YRD (for
example, Shanghai and Hangzhou) whose tertiary industry is the pillar
industry. It represents a widely existing situation in the eastern coastal
and northern coastal cities in China. For the transport sector, there is a
common phenomenon not only in the YRD cities but also across China
that the number of civil automobiles has been increasing sharply at a
mean annual rate of more than 13% between 2003 and 2013 (NBS,
2015). In summary, owing to the important role, lower disparity and
representative generality, we believe that the YRD is a good case study
area for both testing our proposed method and increasing our under-
standing of urban CO2 emissions in China.

2.2. Description of the data

Table 1 outlines the data used for the analysis, which generally
includes two kinds, with a time range from 2003 to 2013. One is the
spatial data including NTL produced by the Defense Meteorological
Satellite Program's Operational Linescan System (DMSP-OLS), land use
and land cover data classified based on Landsat Enhanced Thematic
Mapper Plus (Landsat ETM+) images, NDVI data based on Moderate-
resolution Imaging Spectroradiomet (MODIS) from United State Geo-
graphic Survey (http://www.usgs.gov), and population density data.
The nighttime light data (version 4) have a spatial resolution of
1 km×1 km, and its digital number (DN) values of the artificial
nighttime light brightness from cities, towns, and other sites ranged
from 0 to 63. These data can be accessed online from the National
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Geophysical Data Center at NOAA, USA (http://ngdc.noaa.gov/eog/).
The monthly composite NDVI in China after splicing, cutting and re-
projection was download from the Resources and Environmental Sci-
ences International Scientific & Technical Data Mirror Site, Computer
Network Information Center (http://www.gscloud.cn). The land use
data including 6 land types (urban built-up, cropland, water, forest,
grassland, others) as well as the population density data were obtained
from the Data Center for Resources and Environmental Sciences, Chi-
nese Academy of Sciences (http://www.resdc.cn). The other data in-
clude the city-level statistics for CO2 accounting. The direct energy
consumption data by industry, commercial and household sectors, to-
gether with the vehicle fleet number of all eleven cities, were compiled
from the statistical yearbooks of each city, Jiangsu and Zhejiang pro-
vinces, and China overall.

3. Methodology

Generally, the method that uses NTL to downscale statistically

accounted CO2 emissions to scale of interest (for example, pixel, urban,
and etc.) is based on a hypothesis that the pixel-level NTL's brightness
has a positive correlation with the energy consumption related CO2

emissions from the same pixel. In our study, in order to downscale city-
level accounted CO2 emissions to urban scale, there are basically two
major steps. The first is to process the pre-modeling data, which con-
tains the city-level CO2 accounting, and NTL data correction and urban
extent extraction. The second is to model urban CO2 emissions through
building the correlation between accounted emission and NTL, and
estimating pixel-level emissions and aggregating them to urban scale.

3.1. Pre-modeling data processing

3.1.1. City-level CO2 accounting and uncertainty quantification
As defined in the corporate accounting and reporting standards,

which were developed by the World Resources Institute and the World
Business Council for Sustainable Development (WRI/WBCSD) and are
widely used by researchers, the city-level carbon inventories generally

Fig. 1. Location of the case study cities in the YRD, China.

Table 1
Data used in this study.

Data type Content Space & time
resolution

Source

Remote sensing
and GIS data

DMSP-OLS nighttime light (Version 4) 1 km×1 km
2003–2013

National Geophysical Data Center of NOAA (http://ngdc.noaa.
gov/eog/)

MODIS monthly composite NDVI 500m×500m
2003–2013

United State Geographic Survey (http://www.usgs.gov);
International Scientific & Technical Data Mirror Site, Computer
Network Information Center (http://www.gscloud.cn)

Population density 1 km×1 km
2000, 2005, 2010

Resources and Environmental Sciences Data Center (http://www.
resdc.cn)

Land use and cover data classified from Landsat ETM + images 30m×30m
2000, 2005, 2010

United State Geographic Survey (http://www.usgs.gov); Data
Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (http://www.resdc.cn.)

Statistical data Industrial sector Fossil fuel consumption, such as coal, oil,
natural gas, and electricity

City level
2003–2013

Statistical yearbooks of each city; Statistical Yearbook of Jiangsu
Province; Statistical Yearbook of Zhejiang Province; China
Statistical YearbookCommercial

sector
Electricity consumption

Household sector Consumption of natural gas, liquefied
natural gas, liquefied petroleum gas, coal
gas, and electricity

Transport sector Fleet number, such as bus, taxi, passenger
vehicle, truck, motorcycle
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include three scopes of operational boundaries (WBCSD and WRI,
2004). Scope 1 is the direct emissions from activities that occurred
within the physical boundary of a city, such as emissions from factories,
vehicles, and households. Scope 2 incorporates the emissions outside of
a city but is related to energy use within a city, which includes the
electricity and heat produced elsewhere. Scope 3 is more comprehen-
sive than scopes 1 and 2; it considers both the direct and embodied
emissions during life-cycle processes of products and services consumed
in the city. Scope 3 includes the emissions from waste disposal, air
transport, those embodied in food, water, and construction materials,
and others. Usually, the basic carbon inventory for most cities refers to
scope 1 and 2 emissions (for example, Kennedy et al., 2010; Yu et al.,
2012). However, those including Scope 3 emissions are mostly reported
in urban metabolism studies (for example, Kennedy et al., 2009). Ob-
viously, the more scopes included in inventory accounting, the more it
requires extensive data, processing time and expertise (Whittaker et al.,
2013). Due to the features of appropriate coverage of carbon emission
scopes and moderate difficulty in accounting, the SEAP approach
(Yamina et al., 2014) is employed in this study since it fits within scope
1 and 2 emissions, in which city-level CO2 emissions include direct
emissions generated inside of a city boundary, such as the combustion
of coal and oil in industrial enterprises, and the indirect emissions from
electricity consumption and heating that are mainly produced outside
of cities. In the accounting, the SEAP method estimates the CO2 emis-
sions from stationary and mobile sources in a city (Fig. 2). The sta-
tionary emissions include those from energy consumption in industrial,
tertiary and household sectors, whereas the mobile emissions are de-
rived from public, private and commercial transport sectors.

Specifically, the accounted stationary emissions (AEstationary) are
estimated by Eq. (1).

∑= × ×AE (EC NCV EF )
m n t

m n t m n m nstationary
, ,

, , , ,
(1)

where, m, n and t represent the investigated sector, fuel type and year
respectively; EC represents the amount of energy consumption (in
metric tons); NCV represents the net calorific value (in megawatts per
ton, MWh/t); EF represents the CO2 emission factor (in tons CO2 per
megawatts, tCO2/MWh). The details can be found in Table 2.

The accounted mobile emissions (AEmobile) are estimated by Eq. (2).

∑= ⎛
⎝

× × × × × ⎞
⎠

DAE FN VKT FE CR 44
12v n t

v n t v n t v n t n nmobile
, ,

, , , , , ,
(2)

where, v, n, and t represent the vehicle type, fuel type (gasoline or
diesel), and year respectively; In this study, the main types of fuels
consumed by on-road vehicles are gasoline and diesel. FN is the fleet
number, which consists of public (bus and taxi) and private vehicles
(passenger car, truck, and motorcycle). And the passenger car and truck
are further divided into light, medium and heavy-duty classes; VKT
represents the average kilometers vehicle traveled; FE is the fuel
economy of vehicles (in liters per kilometer, l/km); D is the density of
fuel type (in kg/l), which is 0.732 for gasoline and 0.875 for diesel; CRn

is the carbon ratio of fuel type, which is 85.5% for gasoline and 87% for
diesel; 44/12 is the molecular weight ratio of carbon dioxide to carbon.

Due to the lack of statistics on the fleet number further divided by
fuel type, we make the following assumptions to enable the estimation,
1) all the buses and heavy-duty trucks use diesel; 2) all the motorcycles,
taxis and light-duty passenger vehicles consume gasoline. For the rest of
the vehicle classes, the proportions of vehicle either using gasoline or
diesel are estimated by following the literature (Yan and Crookes, 2009;
Han and Hayashi, 2008; Liu et al., 2013). The detailed data are listed in
Table 3.

For the absence of officially published statistics on VKT and FE, they
are complied from literature, and interpolated based on historical
trends for those years lack of data. The details are listed in Table 4 and
Table 5.

Though the SEAP method employed in this paper is compatible with
the IPCC guidelines and is applicable to Chinese cities that have limited
and fragmented energy data, the results may be different from those
generated with the IPCC guidelines, since the former relies partially on
city activities (for example, using fleet number as a proxy to estimate
emissions from the transport sector), whereas the latter mainly depends
on detailed energy consumption statistics. Moreover, even using the
same SEAP method, the parameter settings in different literature may
also cause diverse results. To quantify the uncertainties in CO2 ac-
counting, a Monte Carlo simulation approach was employed. This ap-
proach divides the uncertainties into two sources: activity levels (ALs)
and emission factors (EFs). The ALs and EFs, which were assigned with
a normal distribution and corresponding Coefficients of Variation (CVs,
the ratio of the standard deviation to the average), were fed into the
Monte Carlo simulations. For the ALs, the normal distributions with CVs
of 10%, 20%, 20% and 16% were recommended for industrial,

Fig. 2. SEAP framework for city-level CO2 accounting.

Table 2
NCV and EF for different fuel types.

Fuel type NCV (MWh/t) EF (tCO2/MWh)

Liquefied petroleum gas 13.1 0.227
Diesel 11.9 0.267
Gasoline 12.3 0.249
Kerosene 12.2 0.259
Fuel oil 11.2 0.279
Raw coal 5.8a 0.346a

Clean coal 7.2a 0.341a

Coking coal 7.8 0.341
Coal gas 11.9 0.267
Coke oven gas 10.8 0.160
Natural gas 13.3 0.202
Liquefied natural Gas 13.3 0.231
Electricity / 0.739b

Heat / 0.11(tCO2/GJ)a

Note.
a is from NDRC (2011).
b is the average value of Eastern China power grid released by NDRC (2009);

others are from IPCC (2006).
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commercial, household and transport sectors (Zhao et al., 2012). The
CVs for the EFs are also derived from Zhao et al.’s (2012) work ac-
cording to a range of 95% confidence intervals. The CVs for different
sectors are listed in Table S2 in the Supplementary Material. A total of
1000 trials were performed to estimate the uncertainties in CO2 emis-
sions accounting.

3.1.2. NTL data correction and urban extent extraction
Since the NTL is monitored with separate satellites (DMSP satellites

F10, F12, F14, F15, F16), and the DN values are incompatible for direct
use, we first removed the background noises and lights from the gas
flares based on a method from Elvidge et al. (2009), then calibrated the
data by using the methods proposed by Liu et al. (2012). However,
unlike the approach of Liu et al. (2012), who used a city located in
northeastern China (Jixi city) as the reference region, we chose Taizhou
city, a city in Zhejiang province in YRD, as the reference city to cali-
brate the NTL images. The reason for the detailed calibration process is
described in “1. Calibration processes of DMSP/OLS data in YRD” in the
Supplementary Material.

Because of the relatively coarse spatial resolution of the OLS sensor,
the calibrated NTL data are still suffer from the saturation effect, where
lights detected in the center of large cities are too bright and cannot be
distinguished (Elvidge et al., 2007). Besides, the spatial extent of
lighted areas is often larger than the developed areas (blooming effect)
as the diffuse and scattered lights detected by OLS sensor (Small et al.,
2005). The saturation and blooming effects may cause potential

estimation errors, especially in city center and suburban areas (Zhang
et al., 2013). Based on the assumption of that vegetation cover and
human activities are inversely spatial correlated, an improved Vegeta-
tion Adjusted NTL Urban Index, which combines NTL with time-series
NDVI and population density (Meng et al., 2017), was employed to
reduce the saturation and blooming problems after the calibration of
original NTL dataset.

On the basis of the correction of NTL data, the urban extent was
extracted from a city boundary through a dynamic threshold method,
which has been used in a number of studies (Liu et al., 2012; Zhou
et al., 2014). Here, as shown in Fig. 3, urban is defined as a built-up
area where land has been developed and constructed on a large scale,
including basic municipal public facilities, and where most of socio-
economic activities occur. Its boundary varies over time due to the
urbanization process. In contrast, a city refers to a jurisdictional unit
with a fixed administrative boundary. Urban populations are one of the
most important driving forces of urban expansion (Sutton et al., 2001;
Han et al., 2009); thus, to increase the efficiency of urban extent ex-
traction, we divided the 11 cities into 4 groups based on their urban
population size. They are the super megacity, mega city, large city, and
medium city, following a standard division used by the State Council of
China (2014). Then, we determined an optimal threshold of NTL's DN
value for each city group to separate urban and non-urban extents using
urban built-up areas classified from Landsat ETM + images in 2000,
2005 and 2010 as references. Thresholds from 2000 were applied to the
close years 2003–2004, values from 2005 were applied to 2005–2008,
and thresholds from 2010 were applied to 2009–2013 (Table 6). With
the support of the Landsat data, the accuracy could be much improved,
and those pixels dominated by water and vegetation could be excluded
from the urban extent.

However, the variation in the threshold value will definitely influ-
ence the final result. To quantify the uncertainties of urban extent ex-
traction based on dynamic threshold method on the result of urban CO2

emissions, we conducted a sensitivity analysis by measuring of the
impact of threshold variation (1%, 5% and 10% increase or decrease)
on urban CO2 emissions while keeping other parameters constant.

3.2. Urban CO2 emission modeling

3.2.1. Models for capturing the correlation between accounted CO2 and
NTL

Previous studies suggested the relationship between NTL and socio-
environmental factors (such as population, GDP, and CO2 emissions)
follows a power-law relationship, where a relative change in one
quantity results in a proportional relative change in the other quantity

Table 3
Proportion of vehicles using gasoline or diesel (%).

Vehicle type Passenger vehicles Trucks

Medium Heavy Light Medium

Fuel type G D G D G D G D

2003 72 28 17 83 12 88 10 90
2004 72 28 13 87 12 89 9 91
2005 73 27 12 88 10 90 8 92
2006 73 27 11 89 9 91 8 93
2007 73 27 10 90 8 92 7 93
2008 73 27 9 91 7 93 6 94
2009 74 26 8 92 6 94 6 94
2010 74 26 7 93 5 95 6 95
2011 74 26 6 94 4 96 5 95
2012 75 25 5 95 3 97 5 96
2013 75 25 4 96 2 98 4 96

Note: D and G means diesel and gasoline.

Table 4
VKT by vehicle type in YRD cities (unit: 1000 km/vehicle/year).

Vehicle type Bus Taxi Passenger vehicles Trucks Motorcycle

Light Medium Heavy Light Medium Heavy

2003 58.0a 78.4a 21.2 40.7 40.7 25.4 52.9 52.9 9.0c

2004 58.8a 81.8a 21.4 41.1 41.1 25.7 53.5 53.5 9.0c

2005 59.7a 85.3a 21.8b 41.8b 41.8b 26.2b 54.5b 54.5b 8.0
2006 60.5a 88.7a 22.3 b 42.8 b 42.8b 26.8b 55.7b 55.7b 8.0
2007 61.4a 92.1a 22.9 b 44.1b 44.1b 27.5b 57.4b 57.4b 8.0
2008 62.2a 95.5a 23.7 b 45.6b 45.6b 28.5b 59.3b 59.3b 8.0
2009 63.0a 98.9a 24.6 47.3b 47.3b 29.6b 61.6b 61.6b 8.0
2010 63.9 102.3 25.7 49.3 49.3 30.8 64.2 64.2 7.0
2011 64.7 105.7 26.9 51.6 51.6 32.2 67.2 67.2 7.0
2012 65.5 109.0 28.2 54.2 54.2 33.8 70.5 70.5 7.0
2013 66.4 112.4 29.7 57.0 57.0 35.6 74.1 74.1 7.0

Note.
a is from Zhang et al. (2012).
b is from Liu et al. (2013).
c is from He et al. (2005). Others are interpolated.
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(Sutton and Costanza, 2002).
To determine an improved method that can accurately and reliably

capture the relationship between accounted CO2 emissions and NTL, we
developed the following three econometric models for comparison.
Model 1 is based on pool-data regression and considers no

spatiotemporal heterogeneities across cities and over time, which was
also applied by Su et al. (2014). A double logarithm, as illustrated in Eq.
(3), enabled comparison between the explanatory and explained vari-
ables and ascertained the elasticity of the DN on carbon emissions.
Values of α and β represent the intercept and slope coefficient, ε is the
error term.

= + × +( ) ( )α β εModel 1: ln AE ln DNcity i tcity ,i t i t, . (3)

To capture the influences of spatiotemporal heterogeneity among
the 11 sample cities between 2003 and 2013, panel-data regression
models were proposed. The subscripts i and t denote each city and year,
respectively. Model 2 incorporates a city-specific coefficient (μ) in ad-
dition to DN, which was also used in studies by Meng et al. (2014) and
Shi et al. (2016). Model 3 includes both the city-specific coefficient (μ)
and time variable (σ) as additional explanatory variables. The values of
i and t represent the specific city and year.

= + × + +( ) ( )α β μ εModel 2: ln AE ln DNcity i i tcity ,i t i t, . (4)

= + × + + +( ) ( )α β σ μ εModel 3: ln AE ln DNcity t i i tcity ,i t i t, . (5)

Table 5
FE by vehicle type in YRD cities from 2003 to 2013 (l/100 km).

Vehicle type Bus Taxi Passenger vehicles Trucks Motor

Light Medium Heavy Light Medium Heavy

Fuel type D G G G D G D G D G

2003 33.3a 12.5a 10.2 37.3 24.2 12.6 15.0 33.4 27.4 2.7a

2004 33.3a 12.5a 10.0 37.3 23.8 12.5 14.8 33.4 26.9 2.7a

2005 33.3a 12.5a 9.8b 37.3b 23.4b 12.3b 14.6b 33.4b 26.5b 2.7a

2006 33.3a 12.5a 9.6 37.3 23.0 12.0 14.3 33.4 26.0 2.7a

2007 33.3a 12.5a 9.3 37.3 22.6 11.8 14.1 33.4 25.6 2.7a

2008 33.3a 12.5a 9.1b 37.3b 22.1b 11.6b 13.8b 33.4b 25.1b 2.7a

2009 33.3 12.5 8.8 37.3 21.7 11.3 13.5 33.4 24.5 2.7
2010 33.3 12.5 8.5 37.3 21.2 11.0 13.1 33.4 24.0 2.7
2011 33.3 12.5 8.2 37.3 20.7 10.7 12.8 33.4 23.5 2.7
2012 33.3 12.5 7.8 37.3 20.2 10.4 12.4 33.4 22.9 2.7
2013 33.3 12.5 7.5 37.3 19.7 10.1 12.0 33.4 22.3 2.7

Note.
a is from Zhang et al. (2012).
b is from Liu et al. (2013); Others are interpolated; D and G represents diesel and gasoline, respectively.

Fig. 3. Conceptual map of urban and city boundaries.

Table 6
Dynamic thresholds of four city groups for urban extent extraction.

City group Cities included Optimal threshold

2000 2005 2010

Super megacity
(Urban Pop>10million)

Shanghai 47 48 50

Mega city
(5million < Urban
Pop<10million)

Nanjing, Suzhou 35 45 48

Large city
(1million < Urban
Pop<5million)

Hangzhou,
Changzhou, Wuxi,
Zhenjiang, Nantong,
Jinhua

31 35 46

Medium city
(0.5million < Urban
Pop<1million)

Quzhou, Huzhou 25 30 38
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3.2.2. Internal model validation
Using all the data for 11 cities covering 11 years (121 sample set in

total), we performed an internal validation of Model 3 based on the
following 2-fold cross-validation processes, and compared the result
with that of Model 1 and 2 using the same data and validation process.
i) All the data were randomly divided to two groups; ii) Data in each
group were used in turn as training set for correlation analysis, while
the remaining group was removed. Based on the coefficients derived
from the regression models, the emissions for the remaining group were
predicted; iii) The data in the removed group were used as references to
calculate the difference between the predicted and observed values for
each sample set; iv) The mean squares of the differences for all the
sample set were calculated; v) By repeating the processes 1000 times
through the Monte Carlo simulation, the model accuracy could be as-
sessed through the median of root mean squared error. The lower the
median is the more accurate the model will be.

3.2.3. Urban CO2 emissions estimation
Based on the correlation between city-level accounted CO2 emis-

sions and DN that were deduced from either Eqs. (3) and (4), or (5), the
pixel-level CO2 emissions could be modeled using DN as a predictor. As
differences exist between the accounted and modeled emissions, we
used their ratio to further calibrate the CO2 emissions at a pixel level,
which is shown in Eq. (6).

∑ ∑= = ⎛

⎝
⎜

⎞

⎠
⎟CE CE

AE

ME
·ME

k k
urban urban

city

city
urbani t i t

k
i t

i t
i t
k, ,

,

,
, (6)

where CEurbani t, is the calibrated urban CO2 emissions in city i for year t.
The value for k is the pixel within the urban area. AEcity represents the
accounted city-level CO2 emissions. MEcity and MEurban are the modeled
CO2 emissions at a city and urban level.

4. Results

4.1. Model predictive power

Fig. 4 presents the correlation between NTL and the accounted CO2

emissions that were estimated by the three models, and compares each
model's predictive power that is measured by R2. In model 1, the R2 in
both the sectoral and aggregated results was relatively high
(R2>0.65), which indicates that a significant correlation between the
accounted CO2 emissions and NTL, and at least 65% of the change in
CO2 emissions, could be explained by NTL. Meanwhile, the scattered
points deviated from the fitting curve, as also suggested the existence of
regional diversity among the cities. To eliminate the influence of spatial
diversity on the carbon-NTL relationship, panel data analysis con-
sidering the city-specific effect as explained in Model 2 was conducted.
It was found that the R2 in Model 2 was significantly enhanced, with
values over 0.97.

The results in Model 3 justify the importance of the incorporation of
both space and time differences as explanatory variables in estimation.
The R2 values in Model 3 are all improved over those in models 1 and 2.
In the estimation of the relationship between the city's total CO2

emissions and corresponding NTL, the R2 in Model 3 demonstrated the
highest value, reaching 0.990. The city-specific coefficient (μ) for each
city, as estimated by both Model 2 and 3, are listed in Table S5 in the
Supplementary Material. However, for the time dummy variable (σ) in
Model 3, a strong linear correlation with the year difference for mobile
emissions was found, along with an inverted U-shape curve for sta-
tionary and total emissions (Fig. S5 in the Supplementary Material). All
of the R2 of the fitting lines were fairly high, which indicates a strong
predictive power when using the fitting functions to estimate the time
dummy variable σ.

In addition, when looking at the correlations between NTL and the
accounted CO2 emissions from the secondary industrial, tertiary

industrial, and household sectors (as shown in Fig. S6 in the Supple-
mentary Material), Model 3 still performed better than others as its
minimum value of R2 was 0.978. In sum, Model 3, which considers both
the space and time differences across cities and over time, was proven
to have a better predictive power than the other two models in mod-
eling CO2 emissions using NTL as a predictor.

4.2. Model validation

Fig. 5 shows the results of internal validation for three models using
the same data set covering 11 cities from 2003 to 2013. It is found that
the median of root mean square error (RMSE) for 1000 times of two-
fold cross-validations was 0.438, 0.401 and 0.409 for stationary, mobile
and total emissions respectively in Model 3, which was much lower
than that in Model 1 and 2. It suggests that Model 3, which considers
both the space and time differences, is more accurate.

Fig. 6 shows the external validation of our improved model's results
at city level. Through the comparison of our accounted city-level CO2

emissions (with 95% confidence intervals) in some specific cities with
previous studies, it can be clearly found that the results of the same city
can have much difference in different studies. For example, our esti-
mates are all smaller than those from Wang et al. (2013), as they ac-
counted the carbon emissions from industrial processes while we didn't.
And our results are all larger than those from Yu et al. (2012), as we
consider the emissions from heating while they ignored. But anyway,
the changing trend and scale of all the results are similar with each
other, which suggests the validity of our estimation.

Fig. 7 shows the external validation of our results at pixel level by
comparing our modeled 1 km-pixel CO2 emissions with those estimated
by Oda and Maksyutov (2011) (available at http://odiac.org/dataset.
html) in YRD in 2010. It is found that there was an extremely high
emission point in Oda and Maksyutov's estimation (the blue peak in
Fig. 7d) while not in ours. It is because in addition to downscaling the
national fossil fuel-induced CO2 emissions to 1 km pixel level using NTL
as a proxy, Oda and Maksyutov (2011) also separately estimated
emissions from point sources using a global power plant database. Ex-
cept the difference in point source emission, it is clear that our result
can better describe the spatial distribution and heterogeneity of urban
CO2 emissions as the fluctuation of our estimates along the line transact
was more significant (the red curve in Fig. 7d) than Oda and Maksyu-
tov's, and the spatial pattern of our modeled urban CO2 emissions
(Fig. 7c) was closer to the distribution of urban extent (Fig. 7a).

4.3. Urban CO2 emissions in YRD

Based on the results from Model 3, Fig. 8 illustrated the dynamic
change in the calibrated CO2 emissions from urban and non-urban areas
in the YRD cities. As shown in Fig. 8a, urban CO2 emissions increased
four-fold, from 194 million tons in 2003 to 714 million tons in 2013,
with its share in total emissions continuously increasing from 37% to
57%. When looking at per capita CO2 emissions (Fig. 8b), although they
increased at a similar rate of 10% per annum in urban and non-urban
areas, urban areas had a lower value, with an increase from 6 to 15
tons/capita. Furthermore, we also probed into the change in carbon
density. As shown in Fig. 8b, the carbon density of urban land ascended
sharply from 17000 tons/km2 in 2003–27000 tons/km2 in 2007, and
then fluctuated around 28000 tons/km2 thereafter, which is 3–4 times
larger than that of non-urban lands. The faster growth in urban CO2

emissions (22%/yr) compared to that in urban expansion (9%/yr) from
2003 to 2007 is the main reason for the quick increase in carbon density
in urban areas. However, after 2007, the increase in urban CO2 emis-
sions slowed at an annual rate of 9% and resulted in the stabilization of
carbon density.

Second, we also investigated the spatiotemporal patterns of urban
CO2 emissions and illustrated the medium value of Monte Carlo simu-
lation in Fig. 9. Generally, the urban CO2 emissions demonstrated a
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significant increase and expansion over the whole YRD region. How-
ever, the spatial distribution of the increase was not even. High emis-
sions were found in the northern and northwestern parts of the YRD,
such as in Suzhou and Nanjing. In contrast, cities in eastern YRD had a
relatively low urban carbon density (Fig. 9a). To observe the dynamic
changes and spatial differences of urban carbon emissions clearly, we
calculated the annual growth rate of carbon density in each
1 km×1 km pixel from 2003 to 2013, and classified the change into
five grades according to the natural breaking methods (Brewer and
Pickle, 2002). As shown in Fig. 9b, two types of significant growth were
detected. One was the newly built growth in the outer suburbs of each
city, where it was non-urban in 2003 but became urban in 2013.

Another is the rapid growth in the peri-urban areas adjacent to the
urban centers. Notably, the growth in the cities close to Shanghai, such
as Suzhou, Nantong, and Wuxi, were particularly sharp. Moreover, the
change in urban CO2 emissions per capita was also classified into five
grades using the same breaking method (Fig. 9c). Between 2003 and
2013, the fastest growth occurred in Suzhou, whose urban population
was approximately 7.7 million and the population density was 770 cap/
km2 in 2013, but the per capita carbon increased 4-fold, from 10.7 to
41.4 ton/cap. In contrast, Shanghai had an urban population of over 13
million and 3800 cap/km2 of population density. However, its per ca-
pita urban carbon demonstrates the slowest growth from 8.3 to 12.3
ton/cap. This suggests that, on a per capita basis, large and compact

Fig. 4. Comparison of model predictive power. Relationship between city-level NTL and the accounted CO2 emissions from stationary sources (left), mobile sources
(middle), and for the total city (right) in 2003–2013. Scattered points represent the median value of the Monte Carlo simulation results. The error bars represent the
upper and lower bound of 95% confidence intervals.
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cities are usually more carbon efficient than small and sprawling cities
(World Bank, 2010).

5. Discussions

5.1. Uncertainties and limitations of our method

The urban CO2 emissions were calculated from the summation of

gridded emissions within the urban extent. Since we assumed that re-
lationship between 1 km grid level CO2 emissions and NTL was con-
sistent with that at city-level, thus the uncertainty of each gridded
emissions value should be the same as that of the accounted city-level
emissions. Therefore, the uncertainties in urban CO2 emissions mod-
eling should derive from the following two approaches.

First, city-level CO2 emissions were accounted by the SEAP ap-
proach. Based on a Monte Carlo simulation, the mean uncertainties

Fig. 5. Internal validation of model results. The vertical lines are the median of RMSE for 1000 times of two-fold cross-validations.

Fig. 6. City-level external validation of our method (Liu et al., 2011; Lo, 2014; Wang et al., 2012).

J. Han et al. Environmental Modelling and Software 107 (2018) 307–320

315



(with 95% confidence intervals) of our accounted CO2 emissions from a
stationary source, mobile source, and city total, for the 11 cities be-
tween 2003 and 2013, were −17.5% to 18.0%, −18.0%–19.7%, and
−17.5% to 18.0%, respectively. As a comparison to other studies, the
uncertainty in China's CO2 estimation conducted by Gregg et al. (2008)
ranged from 15 to 20%.

Second, the urban extent was extracted by a dynamic threshold
approach. By comparing our estimated urban extent in some of the
selected cities for each city group in 2005, 2010, and 2013 with the
land use and cover data classified from Landsat images that were ob-
tained from the Data Center for Resources and Environmental Sciences,
at the Chinese Academy of Sciences (http://www.resdc.cn) and the
Global Institute for Urban and Regional Sustainability (http://www.
giurs.com/), the reliability of the dynamics of urban extent could be
measured by Kappa and Overall Accuracy (OA) indices, which are two
widely used coefficients to assess the classification accuracy of remote
sensing images (Cohen, 1960; Fitzgerald and Lees, 1994). As illustrated
in Fig. S7 - Fig. S9 in the Supplementary Material, the average Kappa
and OA were 0.37 and 89.17% in 2005, 0.38 and 88.41% in 2010, and

0.38 and 84.53% in 2013, suggesting that the dynamic threshold
method can capture the change in urban extent with a relatively high
accuracy.

Fig. 10 shows how every 1%, 5% and 10% increase or decrease of
the DN threshold will affect the final urban CO2 emissions. We found
that the sensitivity of the urban CO2 emissions to DN threshold differed
from years and increased when the variation in threshold became
larger. Specifically, every 1% change in the DN threshold would con-
tribute to −4.1–2.5% changes in urban CO2 emissions. A 5% threshold
variation would cause −7.9–9.7% changes in emissions. When the
threshold variation increased to 10%, the urban CO2 emissions would
change by 15.8–20.1%, which was as large as the mean uncertainties in
the city-level CO2 accounting. This suggests that urban extent extrac-
tion was as important as city-level CO2 accounting for reducing the
uncertainties of urban CO2 modeling. In the future, more emphasis
should be put on improving the quality of statistical energy data, raising
the accuracy of carbon emissions factors in study area and improving
the reliability of the extracted urban extent.

Some limitations still remain and require further research. First,

Fig. 7. Pixel-level external validation of our results. a) Landsat image in 2010; b) Pixel-level CO2 emissions in 2010 estimated by Oda and Maksyutov (2011); c) Pixel-
level CO2 emissions in 2010 estimated by our method; d) Value comparison in a line transect of YRD in 2010.
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only three years of Landsat images were used as a reference in the urban
extent extraction, which limits the reliability of the results. Second, the
significant correlation between city-level CO2 emissions per sector and
NTL (as shown in Fig. 4 and Fig. S6 in the Supplementary Material) is
only from the perspective of statistical analysis, it may not mean there
is real correlation between pixel-level NTL and CO2 emissions per
sector. Without the detailed information about the land type of and the
human activity upon the pixel, our method can only represent mixed
CO2 emissions from different sectors at pixel level. Third, the external
model validation at pixel level is the comparison of our results with
other researcher's model results rather than the comparison with the
real ground-based CO2 emission monitoring data. In the future, possible
improvements could include the following aspects. a) Collecting more
Landsat images to raise the accuracy of urban extent extraction; b)
Combining more detailed land use and human activity data (for ex-
ample, high-resolution land use and cover maps, and point-of-interest
data of infrastructure distribution) to obtain more information about
urban pixel so that pixel-level CO2 emissions per sector could be esti-
mated; c) Conducting a true external validation by running an atmo-
spheric transport-dispersion model based on our modeled 1 km pixel-
level CO2 emission data, and comparing results with ground-based CO2

monitoring data (for example, the TANSAT carbon satellite data, which
has a 1× 2 km spatial resolution and was released in 2017 (http://
satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx)).

5.2. Potential uses

Based on the proposed method for estimating urban CO2 emissions,
several potential uses can be derived. They include but are not limited
to the following.

The proposed method can serve as a decision-support tool for up-
dating and investigating the dynamic changes in urban CO2 emissions
at a relatively high spatial resolution. They can also be used as input for
carbon-cycle and climate-simulation models.

The exploration of urban CO2 emissions and their variation provides
insights for follow-up analysis. Combined with the spatial data of socio-
economic variables (e.g., GDP, population), infrastructure distribution,
and land use/cover, the socioeconomic and biophysical factors that
drive urban CO2 change could also be quantified.

Data availability and quality are recognized as the major obstacles
for accurately estimating the spatial and temporal patterns of CO2

emissions. The pixel-level CO2 estimation by downscaling from city-
level CO2 inventory rather than from nation and sub-national regions,
as shown in our case study, provides a possibility to address this gap.
Though it requires not only the statistical energy data but also the ac-
tivity data (for example, vehicle fleet number), we believe it is feasible
to collect similar data for other Chinese cities as well. Similar database
for cities in other countries should also be explored via international
collaboration.

6. Conclusions

In this study, we propose an improved method for quantifying urban
CO2 emissions using NTL as a proxy. In contrast to previous research,
we bring forward the existing CO2 inventories from national and pro-
vincial levels to city level, correct the saturation problem of NTL, and
considers the spatiotemporal heterogeneities across cities and over time
in modeling the NTL-CO2 correlation. Although the correlation para-
meters derived in the YRD were city specific and cannot be directly
used for other cities/regions in China, the developed method can be
applied to other areas, even if they do not have a detailed energy bal-
ance table; furthermore, our method is proven to better capture the
correlations between NTL and CO2 emissions from different sectors
(that is industrial, tertiary, household, and transport sectors) or for city
aggregates compared to the methods reported in previous studies. Our
method is a supplement to existing approaches for modeling urban CO2

emissions. Moreover, it helps understand the spatiotemporal dynamics
and causal factors of urban carbon emissions. The major findings are as
follows.

First, through the internal and external validations, our proposed
method was proven to have better performance for capturing the NTL-
CO2 correlation compared to the methods employed in previous studies
(Su et al., 2014; Meng et al., 2014; Shi et al., 2016), and for describing
the spatial distribution and heterogeneity of CO2 emissions. Second,
between 2003 and 2013, the total CO2 emissions in the YRD more than
doubled, from 524 to 1243 million tons, during which time, the con-
tribution from urban areas also increased significantly, from 37% to
57%. On a per capita basis, the mean CO2 emissions in urban areas
increased from 6 to 15 tons/cap in the last decade, and large cities are
usually more carbon efficient than small and medium cities. Third, the
urban carbon density increased sharply from 2003 to 2007 and became
steady approximately 28000 tons/km2 afterward. Spatially, urban

Fig. 8. Urban and non-urban CO2 emissions in YRD cities 2003–2013. (a) Amount of emissions; (b) emissions per capita and per area. The solid lines represent the
median value of the Monte Carlo simulation results. The broken lines represent the upper and lower bounds of the 95% confidence intervals.
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sprawl in the outer suburbs, and the regional transfer of labor and re-
source intensive industries from the core cites to peri-urban areas in
adjacent cities, led to rapid growth of urban carbon density in corre-
sponding areas.
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