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A B S T R A C T

Both air pollution detection and source identification for air pollution episodes are highly desirable for detecting
and controlling industrial air pollution. Surveillance of air pollution episodes in industrial parks is the focus of
this article. The surveillance in this study consists of air pollution detection and subsequent source identification.
The Gaussian puff model is applied to simulate the dispersion of air pollution, and the source area analysis
method is used to reconstruct unknown source terms. A case study involving hydrogen sulfide emissions in a
typical chemical industrial park is presented. The long-term efficiencies of both pollution detection and source
identification of a developing planning of boundary-type air quality monitoring network (AQMN) are evaluated.
Five typical scenarios are identified for the evaluation. Moreover, several key factors for the surveillance effi-
ciency variation (i.e., meteorological conditions, monitor number and distance between sources) are discussed.
The efficiency of pollution detection increases with the number of monitors. The efficiency of source identifi-
cation increases with the number of monitors and the distance between sources.

1. Introduction

Recently, source identification for environmental air pollution has
become a major research topic. The primary mission of AQMNs deployed
in industrial parks or nearby regions is to survey industrial emissions,
especially to detect violations over prescribed thresholds (Adams and
Kanaroglou, 2013). Violations detected can be used as the input mea-
surements for backward systems to reconstruct emission source terms.
Measurements collected by deployed AQMNs have been increasingly
employed to reconstruct the unknown source characteristics of air pol-
lution (Khlaifi et al., 2009; Sharan et al., 2012; Cai et al., 2013; Turbelin
et al., 2014; Hosseini and Stockie, 2016; Singh et al., 2017; Efthimiou
et al., 2017). The results of source inversion can help diminish the con-
taminant threat and can be used as basic input data for forward disper-
sion models to predict subsequent transport and dispersion.

However, emission sources are difficult to be reconstructed in many
air pollution episodes because of the limited available measurements.
Relatively little research has focused on pollution detection and source
identification together for air pollution in industrial parks. The

surveillance efficiency for air pollution episodes in a chemical industrial
park was concerned in this study. The surveillance here referred to
pollution detection and subsequent source identification. The time scale
of the evaluation was one year to consider the variation of surveillance
efficiency with meteorological conditions.

Many AQMNs began operation as a small number of monitors in-
stead of as a well-designed sound systems (Pope and Wu, 2014). The
AQMN concerned in this case study distributed along the boundary of
the industrial park. Two existing monitoring stations were located near
the north-northeast and the east-northeast boundary respectively. It
was designed to cover the boundary evenly on 16 wind directions. This
layout mode of monitoring network is to monitor the transportation
pollution from the inside out with maximum efficiency, which is the
typical development pattern in industrial parks.

The full scale of the AQMN in this study was sufficient to detect air
pollutant export from the industrial park. However, such network was
still too sparse to enable precise source identification. Much more
monitors might be required according to the literature. Allen et al.
(2007) and Haupt et al. (2007) found that an 8-by-8 grid of monitors is
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the minimum needed to reconstruct the source terms (i.e., source lo-
cation, source strength, and wind direction). Rudd et al. (2012) found
that a reasonable estimation of source strength and location could be
obtained with as few as four sensors if they were well placed and the
sampling error was controlled. The number of monitors for source
identification was recommended to be higher than that of the un-
knowns (Rudd et al., 2012; Singh and Rani, 2014; Singh et al., 2015)
due to uncertainties (caused by the lack of a priori information on
source parameters, model representativeness errors, limited and noisy
concentration information, etc.). Thus, it is worth examining how
supportive the AQMN developing program can be for pollution detec-
tion and source identification in this industrial park.

Dispersion model is used here to simulate the capture process by AQMN
of air pollutant, which is also used to evaluate the efficiency of source
identification. Simulated concentrations obtained by a dispersion model
were used as ambient concentration measurements because the selected
monitoring stations were under construction. Different types of dispersion
models can be applied for forward dispersion modelling in source re-
construction. For instance, Flesch et al. (2005) presented a Lagrangian
stochastic model for deducing ground-to-air emissions. Ma et al. (2013)
adopted a Gaussian plume model to reconstruct a continuous source and
explore the performances of different optimization methods for source es-
timation. Further, a Gaussian-MLA model was proposed by Ma and Zhang
(2016) as the forward model to improve the estimation performance in the
emission source terms identification. Long et al. (2010) and Rodriguez et al.
(2011) employed a Gaussian puff model to simulate the dispersion of in-
stantaneous releases for source determination. An integrated Lagrangian
puff model was used by Najafi and Gilbert (2003) for narrowing the pos-
sible source locations and estimating the source rate necessary for emer-
gency response. Computational fluid dynamics (CFD) has been combined
with source estimation method in urban environment, which included true
geometric and flow complexity inherent (Chow et al., 2008; Kovalets et al.,
2011; Kumar et al., 2015, 2016; Efthimiou et al., 2017). Gaussian puff
model was used in this study as the dispersion model to simulate the
concentration distribution of unexpected pollution episodes, because its
simplicity (input parameters are available easily), computationally efficient
and capability in the unsteady emissions and wind conditions simulation
were considered. In addition, pollution episodes are always caused by ab-
normal emissions, little priori source information was usually available to
ensure the operation of explicit dispersion models like CFD and Lagrangian
stochastic model. Detailed historical case data have not been accumulated
to support the operation of the refined dispersion model in this park. It is
uncertain whether the results simulated by refined models are more ac-
curate than those by Gaussian puff model in the absence of detailed prior
information of emission source and environmental conditions. Thus we did
not use a refined method as the forward model.

Source identification method based on dispersion model was em-
ployed in the evaluation of surveillance efficiency. Since the concerned
AQMN is sparse, the back-calculation method we used is the source area
analysis method developed in our previous work. Source area analysis
method was proposed to perform the back-calculation with a limited
number of monitoring stations (Huang et al., 2015). In the evaluation
process of this work, the source area analysis method described in Huang
et al. (2015) was employed to provide a collection of potential source
locations for back-calculation under different meteorological conditions.
The source area analysis method was proposed to back-calculate source
locations with limited monitors and considered the variations in other
unknown parameters, such as source strength, source height, release time
and release duration. The real source location may not be obtained by
source area analysis when prior source information is limited, while a
finite range of emission sources distributions can be provided.

The obtained solutions were found to cluster in a fan-shaped area if
only one monitor was available in the back-calculation; in other words,
any source located in this source area could be the emission source.
However, the reconstructed source area in the 2-monitor case was
smaller than that obtained in the 1-monitor case. The source area might

include some other suspected sources (i.e., fake sources) as well as the
real source, so the number of fake sources inside the source area was
then counted to denote the efficiency of source identification in sur-
veillance efficiency evaluation.

The remainder of this paper is organized as follows. Section 2 de-
scribes the evaluation indexes of surveillance efficiency and the corre-
sponding calculation method. Section 3 introduces typical scenarios of
pollution detection efficiency evaluation firstly. The number of moni-
tors that can capture the pollution episodes is different in these sce-
narios, which affects further available data and results of subsequent
source identification evaluation. Then the efficiency evaluation results
of pollution detection and source identification are analysed respec-
tively. Moreover, several key factors for surveillance efficiency varia-
tion (i.e., meteorological conditions, monitor number and distance be-
tween sources) are discussed. A test case is added to analyse the
influence of distance between sources on source identification effi-
ciency. Finally the conclusions are given in Section 4.

2. Methods

2.1. Surveillance efficiency evaluation

The main goal of surveillance efficiency evaluation is to quantify the
long-term capability of an AQMN to support both air pollution detec-
tion and source identification in an industrial park.

rd is the annual accumulative probability of detecting violations
over the air quality ambient standards, and is defined in Equation (1):
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where rd i, is the annual accumulative probability of detecting violations
over the air quality ambient standards for the single monitor i; Pm is the
frequency of meteorological scenario m; Tm,i is the binary variable used
to determine whether the violation is captured by monitor i under
meteorological scenario m, such that Tm,i=1 if it is captured and
Tm,i=0 otherwise; M is the total number of meteorological scenarios
and I is the total number of monitors.

The concentration measurements at monitor locations were gener-
ated using Gaussian puff dispersion model. The pollution episode was
considered to be captured if the concentration value exceeded the upper
bounds. Then, the plotted profiles of envelopes were overlaid with the
monitor locations to determine whether the pollution episode was de-
tected by each given monitor.

rb is the ratio of the annual accumulative probability of fake sources
in the back-calculated source area to the total number of fake sources in
the industrial park, which is formulated as Equation (3).
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where rb s, is the annual accumulative probability of a single fake source
s in the back-calculated source area; Pm is the frequency of meteor-
ological scenario m; Nm,s is the binary variable used to determine
whether fake source s is located in the source area under meteorological
scenario m, such that Nm,s=1 if the violation is captured and fake
source s is located in the source area, and Nm,s=0 otherwise; M is the
total number of meteorological scenarios; S is the total number of fake
sources in the industrial park.

Equation (3) corresponds precisely to Equation (5), provided that
M=1 and Pm=1 when rb is only calculated under a single
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meteorological scenario.

= =r
N
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(5)

2.1.1. Gaussian puff model
The Gaussian puff model was employed here as the dispersion model

in the simulation of pollution detection and source identification, which is
one of guideline models for environmental risk assessment on projects
(Jiang, 2003; MEPPRC, 2004). The concentration measurement C is ex-
pressed as follows:
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where Ci is the predicted concentration at the location of (x, y, z) from puff
i at (xi, yi, zi); Qi is the strength of the puff; zi is the effective stack height of
the puff centreline; and σx, σy, and σz represent the dispersion coefficients
of the concentration distribution in the x, y and z directions, respectively.

The calculation of the dispersion coefficients under non-low (wind
speed≥1.5m/s), low(1.5 m/s > wind speed≥0.5m/s) and calm
(wind speed < 0.5m/s) wind conditions were completed according to
MEPPRC (1993).

In the forward simulation, real observations of wind speed and wind
direction were adopted, and means of temperature gradient—wind
speed method (ΔT/U) was employed to determine atmospheric stability
classifications (Jiang, 2003). The sounding data from Shanghai radio-
sounding stations, provided by university of Wyoming (http://weather.
uwyo.edu/upperair/sounding.html, Site No. 58362) were used to de-
termine the temperature gradients (Petty, 2008).

2.1.2. Source area analysis
The source area analysis method proposed in our previous work

(Huang et al., 2015) was adopted as the method for source identifica-
tion. Several assumptions are imposed for using this method to estimate
the spatial distribution of the potential source:

A1. Although pollution episodes are from a single emission source,
some fake sources may be covered by the back-calculated source
area. Thus, the results are not sufficient to further deduce the real
source from these suspected sources for a pollution episode due to
the limited amount of available information.
A2. The emission source is considered to be a point source. Area and
volume sources are not considered.
A3. The concentration measurements vary mainly with the source
strength and the meteorological conditions.
A4. The emissions may begin a few hours before the detection time
of the pollution episode.

The source area can be reconstructed using this method based on
meteorological data and concentration measurements. The back-cal-
culated process of the source area analysis is illustrated in Fig. 1.

First, the computation domain is meshed, and the centre of each
grid cell is treated as a point emission source. In addition, a reasonable
space is provided for each remaining source parameter (such as Q, T,
and H). Then, optimal combinations are searched from these spaces at
each point. The concentration prediction error at the monitor is eval-
uated for the searched combinations. A combination of source para-
meters is considered feasible provided the calculated concentration
prediction error is less than the defined error limit. The grid point is
accepted as long as a feasible combination is obtained. Finally, the
source area is obtained based on optimal err values of all grid points.

In the study, the study area was meshed with a grid interval of
100m. The upper limit of the release rate was 360 kg h−1, which was
determined based on maximum allowable concentration in occupa-
tional exposure limits (NHCPRC, 2007) and the peak concentration in
whole year at monitors. The emission time was set to be no more than
4 h before the detection time.

The prediction error for each combination of source parameters at
each point is calculated using the following equation:

=err 10 log C
C

s
m (8)

where Cs and Cm are the simulated and measured concentrations, re-
spectively.

The prediction error in Equation (8) represents the composite level
of multiple errors (i.e., measurement error, modelling error, sampling
error, source term error and others). These sources of error are difficult
to separate in practice. The modelling error of the above dispersion
model was directly adopted as the prediction error limit because the
sampling and measurement errors are usually involved in the assess-
ment of the modelling error. The error limit was set to a factor of two in
this paper. It was considered to be a typical value that reflected a match
between measured and simulated concentrations according to
Venkatram and Klewicki (2003).

2.2. Data configuration

2.2.1. Real case
An evaluation of surveillance efficiency was performed for the

AQMN developing planning of a chemical industrial park in Shanghai,
China. This industrial park covered an area of approximately 19 km2

and included eleven sources of hydrogen sulfide, which are shown in

Fig. 1. Computation flow of source area analysis.
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Fig. 2. Hydrogen sulfide is a common odour pollutants in industrial
parks, especially in chemical parks. The abnormal emission of such
odour pollutants has brought serious harm to the industrial park and its
surrounding environment. Among these sources, S0, located at the
centre of the industrial park, was the most difficult to exclude from the
suspected sources in the back-calculation. Therefore, S0 was selected as
the real source of concern in the evaluation and assumed to be a con-
tinuous emitter throughout the whole year, and other sources (S1–S10)
were considered as fake sources. The distances between S0 and the fake
sources (S1–S10) ranged from 0.75 km (S8) to 1.94 km (S4). The emission
rate was set to approximately 100 kg h−1.

Two monitoring stations (i.e., M1 and M2) were located to the north-
northeast and the east-northeast of S0. Additional stations (i.e., M3-M16)
were located near the industrial park boundary, according to the air
quality monitoring programme. The surveillance efficiency was eval-
uated for different numbers of monitoring stations (2, 4, 6, 8, 10, 12, 14
and 16). The locations of the additional monitors were selected ac-
cording to the wind direction frequencies. A map of the sixteen mon-
itoring locations is shown in Fig. 2. These monitoring stations were
approximately 2 km from S0. The lower detection limit and background
concentration for hydrogen sulfide were set to 0.56 μgm−3 (TAPI,
2016) and 13.0 μgm−3, respectively.

Whole-year meteorological measurements at temporal resolution of
1 h were adopted (Fig. 3). Normally, the minimum period that can re-
present the meteorological fluctuations of a study area is considered to be
one year (Arbeloa et al., 1993). The annual frequencies of the sixteen wind
directions ranged from 2.18% to 11.32%. The prevailing wind directions
were from the north-northeast, northeast and east-northeast, with a
combined frequency of approximately 32.21%. The wind frequency from
the north-northwest was the lowest, accounting for only 2.18%.

Wind speeds were classified into low wind conditions (0.5–2.0m/s)
and non-low wind conditions (2.0–10.0m/s). The mean wind speed was
3.49m/s, and the low wind frequency was 11.74%. Low wind conditions
and non-low wind conditions were represented by wind speeds of 1.0m/
s and 2.0m/s respectively, considering that the results for wind speeds of
2.0–10.0m/s were very similar. Neutral stability accounted for ap-
proximately 50.99% of the whole-year atmospheric conditions.

2.2.2. Test case
A test case was developed to analyse the variation in the efficiency of

source identification with distance between sources. In this case, sources
were arranged as points on a 3×3 grid, as shown in Fig. 4. S0’, located at
the centre, was selected as the source of concern. The source grid size in-
creased from 0.2 km to 1.8 km with a step of 0.2 km. A single available
monitor was placed at a downwind distance of 2.0 km from S0’, which
occurred most often in the real case. Wind speeds of 0.5–10.0m/s were
considered in the test case. The Pasquill stability classification scheme was
adopted to divide the atmospheric conditions into six classes (A - F)
(MEPPRC, 1991; Jiang, 2003). The western wind was taken as an example.
The results for other directions were similar. The probability of source
identification was analysed for each existing combination of wind speeds
and atmospheric stability. Other parameters were the same as the real case.

3. Results and discussion

3.1. Typical scenarios of pollution detection from the planned monitoring
network

The pollution detection scenarios were analysed for eight monitor
configurations under different meteorological conditions. The results
showed that the number of monitors covered by the envelope (i.e., the
number of monitors that detected the pollution episode) was not greater
than three for each scenario. The envelope profiles under different wind
speeds and atmospheric stabilities when the wind direction was from
the west are presented in Fig. 5.

The results showed that M10, located downwind of S0, was covered by
the envelope under low wind conditions. In contrast, M8 and M13, located
in adjacent downwind directions from S0, might be covered only under the
stability classes of A - C and low wind conditions. Thus, the pollution
episode was detected by 1–3 monitors when only one monitor was posi-
tioned downwind of S0 for each wind direction, and the 3-monitor case
occurred only under the stability classes of A - C and low wind conditions.

Only M10, which was positioned downwind of S0, was covered by
the envelope under the non-low wind conditions. Due to limited space,
only the envelope profile under the atmospheric stability of class A is
shown in Fig. 5 (b) III. The crosswind span of the envelope decreased
with the atmospheric stability class under non-low wind conditions.

Five typical scenarios were identified according to the number of
monitors covered by the envelope and were accordingly used for source
identification (Fig. 6). Scenario 1 was the most common situation and is
shown in Fig. 6 I. In this scenario, the puffs from source S0 might reach the
monitor directly downwind. In Scenario 2, the puffs might also reach a
neighbouring monitor in the downwind direction, as shown in Fig. 6 II.
There was no monitor directly downwind of S0 in this scenario. If there
were monitors downwind or in the downwind neighbouring areas, the
puffs might reach two or three monitors, as in Scenario 3 (Fig. 6 III) and
Scenario 5 (Fig. 6 V). Scenario 4 is shown in Fig. 6 IV and represents the
monitoring situation in which monitors are located in both of the neigh-
bouring downwind directions but none were downwind. According to the
layouts of effective monitoring areas in Fig. 5, Scenarios 2–5 might occur
under the atmospheric stability classes of A - C and low wind conditions.

Due to the asymmetric distribution of suspected sources, the number
of fake sources covered by the source areas differed under various wind
directions. The results under some wind directions are taken as examples,
as shown in Fig. 7 and Fig. 8. The corresponding rb values are shown in
Fig. 9. The statistics of rb were obtained assuming the frequency of each
meteorological condition to be 1, i.e., using Equation (5).

The variation of back-calculated source area along meteorological
conditions in Scenario 1 is shown in Fig. 7. It was difficult to be excluded
from the suspected sources under different meteorological conditions if
the fake sources were located upwind or downwind of S0 because the
reconstructed source area extended upwind. The fake sources arranged in
other directions but at the same downwind distance were more easily
excluded as their distances from the M1 - S0 segment increased. The
greater the distance, the more easily the fake source was excluded. This is
due to the wedge shape of the reconstructed source area.

Fig. 2. Arrangements of sources and monitors in the industrial park. The
sources (S0–S10) are denoted by red dots. The orange squares indicate the lo-
cations of existing monitors (M1, M2). The blue squares indicate the locations of
proposed monitors (M3 - M16). The monitor subscript numbers decreased with
the wind direction frequency. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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The comparison of the results between Fig. 7 (a) and Fig. 7 (b)
shows that the crosswind spans of the source area under low wind
conditions were much broader than those under non-low wind condi-
tions and that the crosswind span also decreased with changes in the
atmospheric stability. Correspondingly, the rb values (i.e. the efficiency
of source identification) for Scenario 1 ranged from 0.00 to 0.60 under
non-low wind conditions and from 0.70 to 1.00 under low wind con-
ditions, as shown in Fig. 9.

Ten fake sources were covered completely by the back-calculated
source areas in Scenario 2 to Scenario 5 under the stability classes of A -
B. Due to limited space, only the variation of the back-calculated source
area for Scenario 2 to Scenario 5 under stability class C are presented in
Fig. 8. The results indicated that the shapes of the identified source area
in Scenario 2 and Scenario 3 were similar, whereas the shape was
slightly narrower in Scenario 4 and Scenario 5. The rb values ranged
from 0.90 to 1.00 in Scenario 2 to Scenario 5, as shown in Fig. 9. Noted
that the rb values did not decrease obviously with an increasing number
of available monitors in Scenario 2 to Scenario 5. It may be related to the
low wind conditions. Thus, the contributions of Scenario 2 to Scenario 5
to the back-calculation for a single pollution episode were limited.

3.2. rd for the planned monitoring network

The calculated rd increased with the number of monitors in the real

case. The rd value for the two existing monitors (M1 - M2) was approxi-
mately 0.23, and the value was 1.00 for the sixteen monitors (M1 - M16).
The rd increased by approximately 3.4 times when the scale of the AQMN
expanded seven times. This increase was due to the increasing number of
wind directions covered by monitors and was related to the wind fre-
quency characteristics. As shown in Fig. 3 (a), the higher-frequency wind
directions accounted for approximately 7.10–11.32%, whereas the lower-
frequency wind directions accounted for approximately 2.18–4.50%. Thus,
the rd increased more quickly for M1 - M2, M1 - M4 and M1 - M6 and more
slowly for M1 - M12, M1 - M14, and M1 - M16 (Fig. 10).

The contributions of Scenario 1 to Scenario 5 are also given in
Fig. 10. The contributions of one-monitor scenarios (i.e., Scenario 1 and
Scenario 2) accounted for more than 97.13% of the rd value for different
AQMN scales and the value of Scenario 1 accounted for more than
96.67%. Scenarios involving two or three monitors (Scenario 3 to Sce-
nario 5) accounted for approximately 1.23–2.87%. Therefore, the one-
monitor scenarios were the most common scenarios of pollution de-
tection in the real case, especially Scenario 1.

In these five scenarios, two types of pollution detection are possible
for each monitor, i.e., detection at the centreline of the envelope or at
the edge of the envelope. Pollution detection at the centreline of the
plume for each monitor may have occurred in Scenario 1, Scenario 3,
and Scenario 5, whereas detection at the edge of the envelope might
have occurred in Scenario 2 to Scenario 5. The sixteen-monitor

Fig. 3. Meteorological conditions for the study area. (a) Joint frequency distributions of wind direction and speed and (b) frequency distribution of atmospheric
stability.

Fig. 4. Illustration of source-monitor configurations for the test case; the concerned source S0 is located at (0, 0) m. An example of the source map with a 1 km
resolution source grid is denoted by black dots. The monitor 2.0 km east of S0 are denoted by blue squares. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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configuration (M1 - M16) is taken as an example. For M1 - M16, detection
at the centreline of the envelope only occurred in Scenario 1 and
Scenario 5, whereas detection at the edge of the envelope only occurred
in Scenario 5. Fig. 11 shows the results of the calculated rd,i for each
monitor and the contributions of these two detection types to rd,i for
comparison.

The rd,i value was nearly equal to the corresponding wind direction
frequency for most monitors, especially for M9 and M15. The fact that
detection at the envelope centreline was the primary contributor to rd,i
may be the reason for this. The rd,i values were slightly higher than the
corresponding wind frequencies for some monitors due to the increased
contribution of detection at the envelope edge. As mentioned above,
Scenario 2 to Scenario 5 (Fig. 6) occurred only under the stability classes
A - C and low wind conditions. The frequency of the stability classes A -
C and low wind conditions was greater under winds from the west and
west-southwest (W and WSW) than under other wind directions
(Fig. 3). Thus, the contribution of detection at the edge of the envelope
to rd,i for M8, M13, M10, and M14, which were located on the edge of the
envelope from W and WSW, was higher than that for other monitors.

As discussed above, the puffs from the S0 emissions was always
detected by only one monitor located at the centreline under real

meteorological conditions, even though the total number of monitors
was sixteen. There was also a low probability that the puffs would also
be detected by monitors located at the envelope edge, and this prob-
ability was related to the frequency of the occurrence of stability classes
A - C and low wind conditions. Accordingly, the number of available
monitors for source identification was 1–3 after the pollution episode
was detected, and Scenario 1 was the most common case.

3.3. rb for the planned monitoring network

The variation in rb with an increase in the number of monitors is
presented in Fig. 12. As shown in Fig. 12, the calculated rb decreased
nonlinearly with the AQMN scale. This indicated that the efficiency of
source identification for S0 emissions increased with the number of
monitors. As discussed in the literature (Gao et al., 2010; Rudd et al.,
2012), the accuracy of the back-calculation increased with the number
of available monitors, which was concluded based on the back-calcu-
lation results of a pollution episode. While Fig. 12 shows the annual
statistical results of the back-calculation based on long-term measure-
ments. As mentioned above, 1–3 monitors might be used for source
identification, but only one monitor was available in most cases.

Fig. 5. The layout of effective monitoring areas under different meteorological conditions. The red dots are source locations. The orange squares are the existing
monitors for violation detection and the blue squares are the planning monitors. The pink lines are the corresponding plume profiles. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Typical scenarios layouts of monitor covered by the plume. The pink curves are the plume profiles. The wind directions are marked with blue arrows. I and II
indicate the scenario in which only one monitor is covered by the plume; III and IV indicate the scenario in which two monitors are covered by the plume; V indicates
the scenario in which three monitors are covered by the plume. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Fig. 7. Layout of back-calculated source area in Scenario 1 under different meteorological conditions. (a) Under low wind conditions and (b) under non-low wind
conditions.

Fig. 8. Layout of back-calculated source area in Scenario 2 - Scenario 5 under different meteorological conditions. (a) Scenario 2 - Scenario 4 and (b) Scenario 5.

Fig. 9. rb distribution for Scenario 1 - Scenario 5 under different meteorological conditions.

Fig. 10. rd variation with AQMN scale and wind frequency from S0 to the deployed monitors. R1 indicates the contribution ratio of Scenario1 to rd. M1 - M2 indicates
M1 and M2, and M1 - M16 indicates sixteen monitors.
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Meanwhile, the contributions of Scenario 2 to Scenario 5 to the back-
calculation for a single pollution episode were limited. Thus, the main
reason for the increased efficiency of source identification in the real
case was not an increase in the number of monitors in the back-calcu-
lation for each pollution episode but the increased probability of pol-
lution detection.

The results of rb and rb,s with no monitors are also given in Fig. 12
for comparison. All fake sources (S1 - S10) cannot be separated from the
suspected source when no monitors are available, i.e., rb,s was 1 for each
fake source. The rb value for the two existing monitors (M1 - M2) was
approximately 0.74. This indicated that some fake sources may not be
covered by the source area in the back-calculation for some pollution
episodes. The rb was relatively high for M1 - M2, because rb,s was still 1
for the pollution episodes under some wind directions when only M1

and M2 were deployed. Pollution episodes under more wind directions
can be captured with a greater number of monitors, and then more and
more fake sources can be excluded by the source area analysis. Thus,
the calculated rb decreased with an increasing number of monitors. rb
was not lower than 0.20 for M1 - M16, though rd have been up to 1.
Because there was still a low probability for M1 - M16 that a pollution
episode could be detected by multiple monitors under the meteor-
ological characteristics of this case.

The rb,s variation with the number of monitors differed for each fake
source, as shown in Fig. 12. The rb,s values for S3 and S9 were higher
than those for other fake sources when only M1 and M2 were deployed.
This was because the downwind distances from S0 to these two sources
were greater and the distances from these two sources to the M1 - S0 and
M2 - S0 segments were shorter than those for other sources. The rb,s
decreased for each fake source when M3 and M4 were added, and the
value decreased more slowly for S5 than for other sources for the same
reason. The comparison between the results of M1 - M2 and those of M1

- M4 showed that the relative location relationships between the fake
sources and the envelope centreline were different in different back-
calculation scenarios when monitors were added under different wind
directions. A fake source might be easy to be excluded in the M1 - M4

scenario but difficult to be excluded in the M1 - M2 scenario. Thus, the
rb,s variation was related to the source distributions and the frequencies
of meteorological conditions in the real case. Overall, the rb,s value
decreased with the number of monitors for each fake source (sometimes
quickly, sometimes slowly).

The rb,s value was not obviously related to the distance from Ss to Mi

- S0 when sixteen monitors (M1 - M16) were deployed, due to the su-
perposition analysis of the back-calculated source area under sixteen
directions. Instead, the correlation between the rb,s value and the dis-
tance from Ss to S0 became significant for M1 - M16. For example, the rb,s
values of M1 - M16 for S2, S5 and S8 were higher than those of the other
fake sources, which were closer to the real source S0; The values for S4
and S10 were lower, which were farther from the real source S0. The
fake sources S5 and S10 were located in the same direction, but the
former was closer to S0 (Fig. 2). The rb,s value of M1 - M16 for S5 was
more than two times that for S10.

3.4. Discussion

Detection of pollution episodes under different wind directions was
guaranteed when there was one monitor for each wind direction, but
the number of monitors available for source identification was still not
enough. Due to the limited crosswind span of the envelope, pollution
episodes were difficult to be detected by the monitors located at the
envelope edge under most meteorological conditions (Fig. 5). As shown
in Fig. 10, the contribution rates of Scenario 2 to Scenario 5 were no
higher than 3.33%. Additionally, the back-calculation performances of
Scenario 2 to Scenario 5 were poor (Fig. 9). Thus, adding monitors at the
envelope edge to provide more measurements for source identification
is not recommended. Instead, positioning monitors at the centreline is
preferable for long-term surveillance of air pollution episodes from a
certain wind direction.

The fake sources that were close to the real source were difficult to
be excluded from the suspected sources. Considering that pollution
sources in the real case were distributed asymmetrically, a test case was

Fig. 11. rd,i for Mi and the frequencies of winds blowing from S0 to Mi.

Fig. 12. rb variation with AQMN scale and rb,s variation for each fake source.
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constructed to examine the impact of the distance between sources on
rb. The rb variation with distance between sources is presented in
Fig. 13. The statistics were completed under the assumption that the
frequency of each meteorological condition was 1, i.e., using Equation
(5). The results showed that the rb value decreased with increasing
distance between sources. The rb value decreased with increasing dis-
tance between sources more slowly under low wind conditions than
under non-low wind conditions and decreased more quickly with im-
proving atmospheric stability. The rb values were always 1 under dif-
ferent meteorological conditions when the distance between sources
was 0.2 km, which represented eight fake sources were covered by the
source area. Thus, a fake source within 0.2 km of the real source could
not be separated from the suspected sources in real pollution episodes.

In the evaluation, simulated concentrations generated by Gaussian puff
dispersion model were used as ambient concentration measurements.
Because historical emissions information is unavailable in real case, even
though there were historical observations from two existing stations. It is
not enough to support the evaluation of pollution detection efficiency in
this case. In addition, more other stations which were still under con-
struction, measurements from which were uknown. Thus, synthetic data
was used to do unified evaluation for both the existing and planned sta-
tions. The real measurements are not consistent with the simulated con-
centrations due to the impact of multiple errors such as monitoring error
and simulating error. Therefore, the discrepancies between measurements
and simulation should be further considered in real scenario.

4. Conclusions

A developing planning of AQMN in a real chemical industrial park
was evaluated in this study. This is a boundary-type construction
planning of AQMN, in which stations were planned to be placed at
different directions on the boundary of this park. The planning was
generated to ensure the better surveillance of pollutants from the park
to outside. The result of surveillance efficiency evaluation showed that
efficiency of pollution detection increased almost linearly with the
number of monitors. Meanwhile, there is usually only one monitor
(located around the envelope centreline) which can provide informa-
tion on the ambient concentration enhancement resulted from a single
pollution episode. There was a low probability that a pollution episode
could be detected by multiple monitors under the meteorological
characteristics of this case. Thus, source identification efficiency was
not lower than 0.20 on the average annual scale, though pollution
detection efficiency may be up to 1.00. It means that back-calculation of
S0 emission would be interfered by two fake sources on average.

The low efficiency of source identification was not only related to
the limited available monitors for each pollution episode, but also re-
lated to sensitivity to meteorological conditions, the number of moni-
tors and the distance between sources. According to the sensitivity
analysis of source identification efficiency, rb decreased with the dis-
tance between sources, indicating that fake sources become more dif-
ficult to be separated from the real source with decreasing distance
between the sources. Fake sources located at distances of less than
0.2 km from real source cannot be separated from suspected sources
under different meteorological conditions.

The boundary-type AQMN concerned in this study is always the
most basic part of a completed AQMN, which can ensure satisfying
efficiency of pollution detection, but comprehensive efficiency of back-
calculation is relatively low. It is also the functional limitation of
boundary-type AQMN. How to arrange optimally more monitoring
stations or mobile monitoring equipments inside the park would be
taken into account in subsequent studies, considering multiple real
sources’ arrangements and local meteorological characteristics for fur-
ther improving source identification efficiency.
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