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Key Points: 32 

 The increasing trend of the atmospheric CO2 amplitude slowed down during mid-1990s to 33 

mid-2000s. 34 

 The asymmetric response of vegetation growth to spring and autumn warming is an 35 

important driver for the change in seasonality of atmospheric CO2.  36 

 A better representation of the autumn phenology would improve the models’ performance 37 

on the seasonal cycle of atmospheric CO2. 38 

39 
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Abstract 40 

The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the 41 

seasonal cycle of atmospheric CO2 at northern lands (>50oN) since 1960s. However, the 42 

correlation between vegetation growth, temperature and seasonal amplitude of atmospheric 43 

CO2 concentration have become elusive with the slowed increasing trend of vegetation growth 44 

and weakened temperature control on CO2 uptake since late 1990s. Here, based on in-situ 45 

atmospheric CO2 concentration records from the Barrow observatory site, we found a 46 

slowdown in the increasing trend of the atmospheric CO2 amplitude from 1990s to mid-2000s. 47 

This phenomenon was associated with the paused decrease in the minimum CO2 concentration 48 

([CO2]min), which was significantly correlated with the slowdown of vegetation greening and 49 

growing-season length extension. We then showed that both the vegetation greenness and 50 

growing-season length were positively correlated with spring but not autumn temperature over 51 

the northern lands. Furthermore, such asymmetric dependences of vegetation growth upon 52 

spring and autumn temperature cannot be captured by the state-of-art terrestrial biosphere 53 

models (TBMs). These findings indicate that the responses of vegetation growth to spring and 54 

autumn warming are asymmetric, and highlight the need of improving autumn phenology in 55 

the models for predicting seasonal cycle of atmospheric CO2 concentration. 56 

57 
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1 Introduction 58 

Temporal dynamics of atmospheric CO2 concentration, climate and terrestrial carbon (C) cycle 59 

are strongly linked in the present (Schneising et al 2014) and past (Montañez et al 2016) Earth 60 

systems. For example, the recent inter-annual variability of atmospheric CO2 growth rate is 61 

largely caused by fluctuations in terrestrial CO2 uptake (Myneni et al 1997, Keenan et al 2016), 62 

which is mainly driven by variations in climate (Poulter et al 2014, Ahlström et al 2015, Jung 63 

et al 2017). On the decadal scale, an increasing amplitude of the atmospheric CO2 seasonal 64 

cycle at northern high latitudes has been observed since 1960s (Bacastow et al 1985, Kelling 65 

et al 1996, Randerson et al 1997, Graven et al 2013), e.g., about 0.53% yr-1 at the Point Barrow 66 

(BRW) during 1971-2011 (Forkel et al 2016). Although the major contributors to such trend of 67 

seasonal atmospheric CO2 amplitude are still in debate (Gray et al 2014, Zeng et al 2014, Ito 68 

et al 2016, Wenzel et al 2016, Piao et al 2017a), the associated increases in mean annual 69 

temperature (MAT) and vegetation growth has been recognized as one important driver (Forkel 70 

et al 2016, Piao et al 2017a, Gonsamo et al 2017, Yuan et al 2018). Recently, non-uniform 71 

warming trends among seasons have been detected over the northern lands (Xu et al 2013, Xia 72 

et al 2014). Given that climate warming in different seasons would influence vegetation growth 73 

differently (Xu et al 2013, Xia et al 2014, Cai et al 2016), the role of seasonal non-uniform 74 

warming in affecting the vegetation growth as well as the recent changes of the atmospheric 75 

CO2 amplitude remains unclear. 76 

Some recent evidence has implied weakening correlations of MAT with vegetation 77 

growth and atmospheric CO2 concentration in the past three decades. First, the MAT across the 78 

northern high latitudes has kept rising whereas vegetation greenness has begun to decline since 79 

late 1990s (Bhatt et al 2013, Jeong et al 2013). Second, the advanced spring phenology in 80 

response to climate warming has been reported to diminish at northern high latitudes over the 81 

last two decades (Fu et al 2015, Wang et al 2015). Third, a weakening inter-annual correlation 82 

of temperature with vegetation greenness (Piao et al 2014) or spring ecosystem CO2 uptake 83 

(Piao et al 2017b) has been detected at northern latitudes during recent years. In northern 84 

temperate ecosystems, a negative correlation between the atmospheric CO2 amplitude and 85 
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temperature anomalies during 2000s has been found through the analysis of space-borne 86 

atmospheric CO2 measurements (Schneising et al 2014). Thus, it is important to examine how 87 

the temperature changes in different seasons have contributed to such weakening correlations 88 

of MAT with vegetation growth and seasonal CO2 amplitude in recent years.  89 

In this study, we investigated the relationships between changes in the seasonal CO2 90 

amplitude, vegetation greenness and seasonal air temperature in northern lands (>50oN) during 91 

the last three decades. The analyses were based on long-term monitoring records of 92 

atmospheric CO2, global gridded climate datasets, and satellite-derived Normalized Difference 93 

Vegetation Index (NDVI). We also examined the relationships between temperature and gross 94 

primary productivity (GPP) in five terrestrial biosphere models (TBMs), which have been 95 

commonly incorporated into Earth system models for future projections of climate and 96 

atmospheric changes. 97 

2 Data and Methods 98 

2.1 Atmospheric CO2 measurements  99 

There are 19 CO2 measurement sites in the NOAA’s Global Greenhouse Gas Reference 100 

Network (https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php) and 3 sites in Scripps CO2 program 101 

(http://scrippsco2.ucsd.edu/data/atmospheric_co2/sampling_stations) located at lands over 50o 102 

N. Among these sites, only the Barrow observatory (BRW) site recorded the atmospheric CO2 103 

concentration (i.e., [CO2]) continuously during 1982-2010. Thus, in this study, the in-situ long-104 

term CO2 measurements from BRW were regarded as the homogeneous CO2 concentration in 105 

northern lands (>50oN). The seasonal curve of this [CO2] record was shown in figure S1. 106 

The in-situ [CO2] observations at the BRW site were collected hourly. The daily and 107 

monthly data provided by NOAA were averaged from the hourly observations. This study used 108 

the monthly data to derive the CO2 amplitude. The anomalies of monthly [CO2] (i.e., monthly 109 

[CO2] - yearly mean [CO2]) were first calculated and then were used to derive the maximum 110 

(i.e., [CO2]max) and minimum (i.e., [CO2]min) monthly [CO2] in each year. The difference 111 

between [CO2]max and [CO2]min was defined as the CO2 amplitude ([CO2]amplitude). 112 
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To avoid the biases of various processing algorithms, we collected the estimates of 113 

[CO2]amplitude from Forkel et al (2016) and the GLOBALVIEW products (figure S2). In Forkel 114 

et al. (2016), the time series of daily [CO2] records were first fitted with polynomial and 115 

harmonics functions and then de-trended with the Fast Fourier Transformation (FFT) method 116 

(Thoning et al 1989, Thoning et al 2015). In each calendar year, the [CO2]amplitude was calculated 117 

as the peak-to-trough difference of the de-trended seasonal cycle. The data in the 118 

GLOBALVIEW-CO2 product has already been smoothed, interpolated and extrapolated 119 

(Masane KA & Tans PP 1995). GLOBALVIEW-CO2 provides observations at 7-day intervals. 120 

We obtained its [CO2]amplitude as the difference between the maximum and minimum weekly 121 

CO2 data in each calendar year. According to the Theil-Sen analysis, the long-term trends of 122 

[CO2]amplitude were consistent among these processing methods (figure S2). 123 

2.2 Temperature analysis  124 

The temperature trends were analyzed based on the latest version of the CRU temperature data 125 

(CRU TS4.0). It is gridded with a spatial resolution of 0.5°×0.5° at a monthly time step. This 126 

product is gridded using the Angular-distance weighting (ADW) interpolation (Harris & Jones 127 

2017) based on the observations collected from 2600 stations worldwide (Harris et al 2014). 128 

The CRU climate products have been widely used for phenology analysis and for driving 129 

different types of ecosystem models (Koven et al 2011, Fu et al 2014, Xia et al 2017). In this 130 

study, seasonal temperature was averaged from monthly temperature following the definition 131 

of four seasons: Spring, March‒May; Summer, June‒August; Autumn, September‒November; 132 

Winter, December‒February. Besides, MAT of a given year was defined as the average of the 133 

monthly temperature from January to December. The Theil-Sen estimator and Mann-Kendall 134 

trend test were applied in detecting the temporal trends of the seasonal temperature (see more 135 

details at the Section 2.6). 136 

2.3 Satellite derived NDVI 137 

The normalized difference vegetation index (NDVI) is widely used as an indicator for 138 

vegetation productivity (Myneni et al 1997, Zhou et al 2001). It is calculated as the normalized 139 

ratio between near infrared and red reflectance bands (Tucker et al 1979, Tucker et al 2005). 140 
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The NDVI used in this study is from the Advanced Very High Resolution Radiometer (AVHRR) 141 

sensors, which has the longest record of continuous satellite data since 1981. Here, we used the 142 

newest version of GIMMS NDVI dataset (NDVI3g) (Tucker et al 2005, Pinzon et al 2014). It 143 

is a global product at spatial resolution of ~ 8 ×8 km and temporal resolution of 15 days. The 144 

NDVI3g has been widely used for analyzing vegetation changes in recent years (Tucker et al 145 

2005, Peng et al 2013, Wang et al 2014). The maximum value composites (MVC) method 146 

(Holben 1986) was applied to merge segmented data strips to half-monthly values. To lessen 147 

the impacts of sparse soils and snows on vegetation, following zhang et al. (2013), the areas 148 

with multiyear average NDVI less than 0.1 in the northern lands (>50°N) were removed from 149 

the analysis. Moreover, only the half-monthly NDVI from January to September were used to 150 

derive the phenology indices (i.e., start and end of growing season length, see section 2.4). 151 

The sum of monthly NDVI from January to December in a certain year was regard as the 152 

yearly NDVI. Note that the illegitimate signals of the half-monthly NDVI data (i.e., NDVI 153 

<0.1) were filtered. Regional NDVI used in the trend analysis were averaged from the grids of 154 

the northern lands (>50°N). Before calculating the sensitivity of NDVI to MAT and the partial 155 

correlation between NDVI and seasonal temperature (see section 2.6), yearly NDVI data were 156 

resampled to raster of 0.5°×0.5°, to couple with the CRU temperature data.  157 

2.4 Method of determining growing season length  158 

Growing season length (GSL) was calculated as the difference between the start (SOS) and end 159 

(EOS) of growing season. The SOS and EOS were retrieved from the seasonal NDVI curve in 160 

each year based on the NDVI green-up thresholds, which were determined from the rate of 161 

seasonal changes in the multiyear mean NDVI (Piao et al 2006, 2011; Zhang et al 2013). More 162 

specifically, there were six steps in the determination of GSL. First, we calculated the seasonal 163 

curve of multiyear mean NDVI from 1982 to 2010 for each land grid cell and obtained the 164 

changing rate of NDVI (NDVIratio) as: 165 

NDVIratio(t) = [NDVI(t+1) – NDVI(t)]/[NDVI(t)] 166 

where t is time throughout the year with an interval of 15 days. Then, after removing evident 167 

noise in the multiyear mean time-series curve of NDVI for each land grid cell, we performed a 168 
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least-square regression analysis on the curves from January to September and from July to 169 

December for determining the NDVI thresholds of SOS and EOS, respectively, with an 170 

inverted parabola equation: 171 

NDVI = a + a1x + a2x
2 + … + anx

n 172 

where x is the Julian days and n is 6. The corresponding NDVI(t) with the maximum or 173 

minimum NDVIratio was used as the NDVI threshold for determining SOS or EOS, respectively. 174 

Next, we performed a least-square regression analysis on the NDVI time-series curve in each 175 

year for each pixel after removing noise in the two different periods. After that, the SOS and 176 

EOS were identified from the fitted NDVI seasonal curves and their NDVI thresholds, by 177 

selecting the day when the fitted NDVI curve first reached the NDVI threshold. Finally, the 178 

GSL in each year for each land cell was calculated from the difference between EOS and SOS. 179 

The method in this study had been validated by ground-based phenological data in Tibetan 180 

Plateau (Zhang et al 2013) and has been widely used for detecting phenological changes in 181 

various regions (Piao et al 2006, Piao et al 2011, Zhang et al 2013). 182 

2. 5 Simulated GPP by terrestrial biosphere models. 183 

Outputs of annual GPP from five terrestrial biosphere models (TBMs) which provided all the 184 

land cells above the 50°N in the model integration group of the Permafrost Carbon Network 185 

(http://www.permafrostcarbon.org/) were analyzed in this study. The five TBMs are UVic 186 

(Peter 2001, Matthews et al. 2004), CoLM (Dai et al 2003, Ji et al 2014), CLM4.5 (Keith W. 187 

Oleson et al 2003), TEM604 (Hayes et al 2011) and ORCHIDEE (Krinner et al 2005). Details 188 

about these TBMs were listed in table S1. The simulation protocol and model’s driving data 189 

have been described in previous studies (Rawlins et al 2015, McGuire et al 2016, Peng et al 190 

2016). A flux-tower-based GPP database was also used in this study. It was up-scaled from 191 

FLUXNET observations (44 sites locating in the lands northern 50°N) of carbon dioxide, 192 

energy and water fluxes with the machine learning technique of model tree ensembles (MTE, 193 

Jung et al 2011). The MTE GPP is a global gridded product with a resolution of 0.5o × 0.5o. 194 

This product has been widely used as benchmarks to evaluate model performance in recent 195 

years (Anav et al 2013, Tjiputra et al 2013, Peng et al 2015, Xia et al 2017).  196 
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2.6 Statistical analyses. 197 

We estimated the linear trends of the CO2 indices (i.e., [CO2]amplitude, [CO2]max and [CO2]min), 198 

vegetation and temperature using a non-parametric Theil-Sen estimator over each time period. 199 

The significance of the trend was computed by the Mann-Kendall trend test. Comparing with 200 

the ordinary least squares estimation, the Theil-Sen estimator and Mann-Kendall trend test is 201 

less sensitive to outliers (Fernandes & Leblanc 2005, Wang et al 2018). The temporal 202 

anomalies were used for the linear-trend analyses. This analysis can provide both trend and its 203 

level of significance (i.e., the P value that quantifies the probability of whether the trend is 204 

statistically significant from zero) for each period.  205 

The moving-window method was used to detect whether the increasing trends of CO2 206 

indices are persistent. Comparing with the piecewise linear fitting method, it less depends on 207 

the results of single linear segment and the interval-length (Schleip et al 2008). This method 208 

has been used in detecting the changes of growing-season length and its response to climate 209 

change on various time scales (Rutishauser et al 2007, Schleip et al 2008, Jeong et al 2011, Fu 210 

et al 2015). Because the results based the moving-window analysis may be affected by the 211 

window-length (Fu et al 2015), we repeated the moving-window analyses with 10-year, 15-212 

year and 20-year lengths. 213 

The temporal trends of MAT (∆𝑀𝐴𝑇), the sensitivity of NDVI to temperature (𝛾𝑁𝐷𝑉𝐼), and 214 

the sensitivity of CO2 amplitude to temperature (𝛾[𝐶𝑂2]𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
) in the periods of 1982-2010 215 

and 1993-2007 were calculated in each grid cell. The 𝛾𝑁𝐷𝑉𝐼 and 𝛾[𝐶𝑂2]𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 were derived 216 

from the slope of linear regressions, representing the changes of NDVI and [CO2]amplitude with 217 

per degree change of MAT. One-way ANOVA was used to estimate their differences between 218 

1982-2010 and 1993-2007. All the analyses were applied in R (http://www.r-project.org/). 219 

Partial correlation analyses were applied to exclude the impacts of the co-varying factors. 220 

For example, in calculating the impact of spring temperature on SOS, spring precipitation, 221 

spring solar radiation and last-year’s autumn temperature were set as the controlling variables. 222 

Autumn precipitation, autumn solar radiation and spring temperature were set as the controlling 223 
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variables to quantify the impact of autumn temperature on EOS. Similar method was used to 224 

detect the impact of spring and autumn temperature on annual NDVI and modeled GPP by 225 

replacing the seasonal precipitation and solar radiation with annual values. All the data were 226 

aggregated to the 0.5º× 0.5º resolution. The precipitation data were derived from the CRU 227 

TS4.0 data set (Harris et al 2014) and the radiation data was from the Terrestrial Hydrology 228 

Research Group at Princeton University (Sheffield et al 2006).  229 

3 Results and Discussion 230 

3.1 The temporal changes of atmospheric CO2 seasonal cycle and vegetation greenness 231 

We first examined the trends of the measured annual CO2 amplitude ([CO2]amplitude) at Point 232 

Barrow, Alaska (BRW, 71oN). The non-parametric Theil-Sen estimator showed that the 233 

increasing trends of the [CO2]amplitude at the BRW (0.075 ppm yr-1, P <0.05; figure 1(a)) were 234 

associated with the decreasing [CO2]min (-0.058 ppm yr-1, P <0.05) rather than the enhancing 235 

[CO2]max (0.016 ppm yr-1, P =0.17) from 1982 to 2010. The 10-year moving windows show 236 

that the increasing rates of the CO2 amplitude was slower around 2000 (figure 1(a) and table 237 

S2). To avoid the biases from different time-intervals for trend estimation, we also detected the 238 

trends with 15-year (figure S3) and 20-year (figure S4) moving windows. The results also 239 

showed that the trends of [CO2]amplitude from mid-1990 to mid-2000 (e.g., 0.03 ppm yr-1, P =0.55, 240 

1993-2007) (figure S4(a) and table S4) were significantly slower than those during other 241 

periods. A recent study which integrated the CO2 records from multiple sites also has showed 242 

a stalled trend in the seasonality of atmospheric CO2 during the same period (Yuan et al 2018). 243 

A slowdown of vegetation greening since mid-1990s was also observed by our analysis 244 

on the dynamics of NDVI (figure 1(b) and figure S5(d)). This finding is consistent with the 245 

results from recent analyses on vegetation dynamics over the pan-Arctic tundra (Bhatt et al 246 

2013, Jeong et al 2013). Both the MTE GPP (figure S5(e)) and the ground-based measurements 247 

of growing-season net ecosystem CO2 exchange (figure S5(f)) showed similar trends since 248 

1990s. These lines of evidences together suggest that the increasing trend of the growing-249 

season CO2 uptake has weakened from 1990s to mid-2000s in northern ecosystems.  250 
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Meanwhile, a weak but significant linear relationship between average NDVI over the 251 

northern lands (>50oN) and [CO2]min at the BRW site was observed during 1982-2010 (r = -252 

0.47, P <0.05; figure 1(b)). The synchronous changes of [CO2]amplitude with [CO2]min (figure 253 

S5(a), (b) and (c)) and NDVI (figure 1) imply that the long-term positive trend of [CO2]amplitude 254 

is, at least in part, driven by photosynthetic CO2 uptake or vegetation growth (Forkel et al 2016, 255 

Wenzel et al 2016). 256 

3.2 The asymmetric responses of vegetation growth to spring and autumn warming  257 

An increasing body of research has shown a non-linear response or reduced sensitivity of 258 

vegetation growth to rising MAT over high latitudes in recent years (Bhatt et al 2013, Jeong et 259 

al 2013, Piao et al 2014). As shown by figure 2, although the MAT increased even faster from 260 

mid-1990s to mid-2000s (e.g., 1993-2007) than the whole period of 1982-2010, the sensitivities 261 

of [CO2]amplitude and NDVI to MAT were lower during that period than 1982-2010. Given the 262 

fact that temperature in different seasons has non-uniform impacts on vegetation growth (Xia 263 

et al 2014), we further analyzed the changes of seasonal temperatures based on the CRU 264 

temperature datasets (see Methods). As shown by figure 3(b), the fastest warming season was 265 

spring during 1985-1999 (+0.12 ºC year-1) but then changed to autumn during mid-1990s to 266 

mid-2000s (e.g., +0.11 ºC year-1 in 1993-2007, table S4). It indicates that a better understanding 267 

of the relationship between the seasonal temperature changes and vegetation growth is needed 268 

to explain the slowdown of [CO2]amplitude from 1990s to mid-2000s. 269 

The variation of NVDI during 1982-2010 in northern ecosystems depends substantially 270 

on the GSL on both grid and regional scales (figure 1(b) and figure S6). Further partial 271 

correlation analysis showed that the SOS (partial r = -0.36) was more dependent on temperature 272 

change than the EOS (partial r = 0.018, figure 3(c) and figure S7). During 1982-2010, the SOS 273 

was advanced by 2.15 day oC-1 with spring warming, whereas warming in autumn only delayed 274 

EOS by 0.80 day oC-1 in northern ecosystems. As a result, the advancing rate of SOS over the 275 

moving 15 years has decreased but the extending rate of EOS was not significantly increased 276 

during 1982-2010 (figure S8 and table S5). Meanwhile, the increasing rate of NDVI until it 277 

stalled in mid-1990s is driven by warming-induced increase in spring and early summer NDVI 278 
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along with the advancement of SOS (figure S8), for which spring warming has stalled after 279 

mid-1990s. It has contributed to the decline in the rate of [CO2]amplitude increase since the mid-280 

1990s. These results together suggest that the non-uniform warming between spring and 281 

autumn during mid-1990s and mid-2000s (figure 3(b)) could be an important driving factor for 282 

the slowdown of expanding GSL, greening vegetation and the decreasing [CO2]min. This can 283 

qualitatively explain the pause in the enhancement of [CO2]amplitude (figure 1(a)). 284 

3.3 The response of vegetation productivity to spring and autumn warming in current 285 

terrestrial biosphere models 286 

We examined whether TBMs that have been focusing on simulation of C dynamics in northern 287 

latitudes can adequately represent the differential impacts of spring and autumn warming on 288 

vegetation productivity. The ensemble output of GPP from five TBMs (CLM4.5, CoLM, 289 

ORCHIDEE, TEM6 and UVic; table S1) and a flux-based GPP dataset (MTE) were analyzed 290 

(figure 4). The dependence of modeled GPP variations on spring-temperature change (with the 291 

inter-model mean partial r as 0.57 under the significant level of P <0.05) is comparable with 292 

that of the MTE GPP (partial r = 0.53, P <0.05) as well as that of NDVI (partial r = 0.49, P 293 

<0.05; figure 4(b) and figure S9). However, the dependences of GPP variations on autumn-294 

temperature change is more positive in the models (inter-model mean partial r = 0.31, P <0.05) 295 

than the MTE GPP (partial r = -0.04, P <0.05) and NDVI (partial r = -0.16, P <0.05; figure 296 

4(b) and figure S10). This mismatch between modeling and data-oriented results indicates that 297 

the current TBMs overestimate the positive impact of rising MAT on ecosystem CO2 uptake in 298 

the autumn. 299 

As the land biogeochemical component in most Earth system models is similar to the 300 

TBMs in this study, it is still challenging to accurately simulate the seasonal cycle of 301 

atmospheric CO2. The findings of this study suggest that a better representation of the warming 302 

impacts on autumn phenology could partially improve the models’ performance. However, the 303 

autumn phenology is diversely represented in different models. For example, leaf senescence 304 

in the ORCHIDEE model is simulated as the timing when monthly temperature falls below a 305 

given number, which varies with plant function type (Krinner et al 2005). In the TEM, growing 306 
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season ended when the soil temperature is lower than the frozen point. However, leaf-307 

senescence events are collectively affected by not only temperature but also day length 308 

(Ballantyne et al 2017), radiation (Bauerle et al 2012) and even spring phenology (Liu et al 309 

2016, Keenan & Richardson 2015). In fact, the poor representation of autumn phenology by 310 

the models has been raised in some previous studies (Richardson et al 2010, 2012; Keenan & 311 

Richardson 2015). Thus, combining the different types of phenological data (e.g., Richardson 312 

et al 2018) with better phenology models could be helpful to improve the simulation of the 313 

seasonal cycle of atmospheric CO2 at high latitudes in Earth system models. 314 

3.4 The role of the non-uniform warming in regulating the seasonal atmospheric CO2 315 

cycle  316 

This study highlights that the asymmetric responses of vegetation growth to spring and autumn 317 

warming is an important driver for the decadal changes in the seasonality of atmospheric CO2. 318 

In spring, solar radiation is not limiting as temperature (Tanja et al 2003). Thus, spring warming 319 

extends the growing season length by advancing the onset of plant photosynthesis (Piao et al 320 

2008), leading to the increasing vegetation productivity and the decreasing [CO2]min of the 321 

atmospheric CO2 seasonal cycle. In autumn, solar radiation can obstruct the accumulation of 322 

abscisic acid (Gepstein & Thimann 1980) and substantially delay the timing of leaf senescence. 323 

Photoperiod is a more proximal factor than temperature in controlling senescence (Bauerle et 324 

al 2012). Thus, autumn warming has a neutral impact on vegetation productivity (figure 3(c)) 325 

over the northern lands.  326 

Warming in autumn as well as in spring could potentially enhance the peak of 327 

atmospheric CO2 seasonal cycle by stimulating the respiratory processes of plants and soil 328 

microorganisms (Piao et al 2008, 2017a). As shown by the FLUXCOM database (Jung et al 329 

2017), the increasing trends of total ecosystem respiration during both growing and non-330 

growing seasons were significantly larger in mid-1990s to mid-2000s (e.g., 1993-2007) than 331 

1982-2010 (figure S11). This result is consistent with previous findings that the warming 332 

induced increases in respiration could partially cancel out the impact of enhanced 333 

photosynthesis on the atmospheric CO2 seasonality in North Hemisphere (Gonsamo et al 2017, 334 
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Jeong et al 2018). However, further conclusions are limited by quantifying the contributions of 335 

increased respiration to the slowdown of CO2 amplitude since mid-1990s. Future studies could 336 

improve on the present analysis through breaking the limitation. 337 

Both spring and autumn are likely to keep warming in future scenarios (IPCC, 2013), and 338 

further warming could trigger some limitations on vegetation productivity. For example, early 339 

spring warming may slow the fulfillment of chilling requirement for spring leaf phenology and 340 

thus delay the SOS (Yu et al 2010, Fu et al 2015, Vitasse et al 2018). The spring warming 341 

induced advancement of leaf unfolding date could increase the risk of frost damage to buds 342 

(Inouye 2008) and decrease soil water availability for subsequent peak productivity (Buermann 343 

et al 2013). Autumn warming may cause more cloudy days with less radiation (Vesala et al 344 

2010), which may accelerate the ending of growing season (Bauerle et al 2012). Meanwhile, 345 

warm autumns strengthen the evapotranspiration during the late growing season and intensify 346 

the stresses of drought on vegetation growth (Barichivich et al 2013). 347 

4 Conclusions  348 

This study detected a slowdown of the increase in atmospheric CO2 amplitude during mid-349 

1990s to mid-2000s. This phenomenon was correlated with the pause of increasing NDVI and 350 

advancing SOS across the lands at northern high latitudes during the same period. The changes 351 

of vegetation greenness and growing-season length were temporally correlated with the stalled 352 

increase in spring temperature since mid-1990s. Warming in autumn was persistent during this 353 

period, suggesting that the non-growing season respiration could be more important in 354 

governing the future increase in seasonal CO2 amplitude (Jeong et al 2018). These findings 355 

emphasize that the asymmetric responses of vegetation growth to spring and autumn warming 356 

is important in influencing the change of atmospheric CO2 amplitude. This study also indicates 357 

that global carbon-cycle models need to better represent the phenological response to 358 

temperature change for accurately simulating the seasonal cycle of atmospheric CO2. Overall, 359 

this study confirms that the recent non-uniform climate warming among seasons has played an 360 

important role in regulating the temporal trends of vegetation growth and atmospheric CO2 361 

amplification over the northern lands. 362 
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Figures  671 

 672 

Figure 1. Changes in temporal trends of CO2 amplitude and plant growth (NDVI). 10-673 

year moving window from 1982 to 2010 show the changing trends of (a), the peak-to-trough 674 

amplitude ([CO2]amplitude) and yearly maximum CO2 concentration ([CO2]max) as well as the 675 

minimum CO2 concentration ([CO2]min) at Point Barrow (BRW); (b) NDVI and growing season 676 

length (GSL). The insert in panel A represents changing rates of the [CO2]amplitude, [CO2]max and 677 

[CO2]min during 1982-2010. The insert in panel (a) shows the long-term trends of [CO2]amplitude 678 

(red column, 0.075 ppm yr-1, P<0.01), [CO2]min (green column, -0.058 ppm yr-1, P<0.01) and 679 

[CO2]max (blue column, 0.016 ppm yr-1, P =0.17) across 1982 to 2010. The insert in panel (b) 680 

shows the correlation between the yearly anomalies of the [CO2]min and NDVI during 1982-681 

2010 (with r = -0.47, P <0.05). 682 
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 683 

Figure 2. The changes of mean annual temperature (a. ΔMAT, oC year-1) and the 684 

temperature sensitivities of atmospheric CO2 seasonal amplitude (b. γ[CO2]amplitude, 685 

10ppm oC-1) and of the NDVI (c. γNDVI, oC-1) during 1982-2010 and 1993-2007. 686 

***Significant difference at P <0.01, and n.s. represents no significance. 687 

  688 
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 689 

Figure 3. Temporal variations of seasonal temperature over northern lands (>50°N). (a) 690 

The year-to-year anomalies were shown by the transparent lines and their 5-year running means 691 

were displayed by the solid (spring and autumn) and dashed lines (summer and winter). (b)15-692 

year moving windows from 1982 to 2010 show the trends of seasonal temperature changes. (c) 693 

Frequency histograms of the sensitivity (i.e., the partial correlation coefficient) of SOS to 694 

spring temperature change (SOS vs. Tspring) and EOS to autumn temperature change (EOS vs. 695 

Tautumn) from 1982 to 2010. Note that the negative values of the X-axis represent the advanced 696 

SOS or EOS with temperature increase.  697 
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 698 

Figure 4. Temporal variations of GPP and its dependence on spring and autumn 699 

temperature. (a) Temporal changes of annual total GPP over northern lands (>50oN) from a 700 

flux-based dataset (i.e., MTE) and five terrestrial biosphere models (See Methods). The green 701 

line show the annual MTE GPP. The black line represents the model averages and the grey area 702 

is the standard deviation among models. (b) Mean partial correlation coefficient (partial r) of 703 

NDVI and GPP to spring temperature and autumn temperature changes. The shaded areas 704 

represent the standard deviations of the partial r among models. Note that only the grid cells 705 

with significant partial correlation (P <0.05) were included in this analysis. 706 
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